Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The aim of this work was to study the effect of canal wall-up (CWU) and canal wall-down (CWD) and mastoid obliteration in conjunction with CWD (CWD-MO) mastoidectomy on the sound transmission characteristics of the human ear. Methods: Three mastoidectomy surgical methods, CWU, CWD and CWD-MO, were simulated on the freshly dissected cadaver heads. Then, the finite element (FE) models corresponding to these surgical methods were established by micro-computed tomography (Micro-CT) and reverse engineering technology, and the accuracy of the models was verified. Finally, the FE Models were used to analyze the effects of different surgical methods on the sound transmission characteristics of the human ear. Results: For CWU, since the integrity of the outer wall of the ear canal is ensured, the sound pressure (SP) gain of the ear canal and the stapes footplate displacement (FPD) gain after this operation are close to normal values. For CWD, due to severe damage to the outer wall of the ear canal, a negative gain of the ear canal SP occurs in the high-frequency range, and the resonance frequency is significantly reduced. For CWD-MO, the frequency range of SP negative gain in the ear canal is reduced due to the addition of fillers in the ear canal to reduce the degree of damage, and the resonance frequency is increased compared to CWD. Conclusions: The impact of three types of mastoidectomy, including CWU, CWD, and CWDMO, on the sound transmission characteristics of the human ear after surgery is relatively small.
Czasopismo
Rocznik
Tom
Strony
133--145
Opis fizyczny
Bibliogr. 40 poz., rys., wykr.
Twórcy
autor
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
autor
- Xuzhou Third People’s Hospital, Xuzhou, China
- Department of Otolaryngology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
autor
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
autor
- Department of Otolaryngology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Graduate School of Xuzhou Medical University, Xuzhou, China
autor
- Artificial Ear Laboratory of Jiangsu Province, Xuzhou, China
- Department of Otolaryngology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
autor
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, China
autor
- Xuzhou Third People’s Hospital, Xuzhou, China
Bibliografia
- [1] AHMAD W., AKBAR S., HASSAN S., Hearing improvement among children with cholesteatoma who underwent canal wall up and canal wall down surgical management, Pakistan Journal of Medical Sciences. 2022. 38 (4 Part - II), 868–871.
- [2] ALVES R.D., JUNIOR F.C., DE OLIVEIRA FONSECA A.C., BENTO R.F., Mastoid obliteration with autologous bone in mastoidectomy canal wall down surgery: a literature overview, International Archives of Otorhinolaryngology, 2015, 20 (1), 76–83.
- [3] AREIAS B., PARENTE M., SANTOS C., GENTIL F., NATAL JORGE R., The human otitis media with effusion: a numerical-based study, Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20 (9), 958–966.
- [4] BORKOWSKI P., MAREK P., NIEMCZYK K., LACHOWSKA M., KWACZ M., WYSOCKI J., Bone conduction stimulation of the otic capsule: a finite element model of the temporal bone, Acta Bioeng. Biomech., 2019, 21 (3), 75–86.
- [5] BRUMMUND M.K., SGARD F., PETIT Y., LAVILLE F., Three- -dimensional finite element modeling of the human external ear: Simulation study of the bone conduction occlusion effect, The Journal of the Acoustical Society of America, 2014, 135 (3), 1433–1444.
- [6] CHANAUD R., Effects of geometry on the resonance frequency of Helmholtz resonators, Journal of Sound and Vibration, 1994, 178 (3), 337–348.
- [7] CHEN S.-I., LEE M.-H., YAO C.-M., CHEN P.-R., CHOU Y.-F., LIU T.-C., SONG Y.-L., LEE C.-F., Modeling sound transmission of human middle ear and its clinical applications using finite element analysis, The Kaohsiung Journal of Medical Sciences, 2013, 29 (3), 133–139.
- [8] DAS-PURKAYASTHA P.K., COULSON C.J., POTHIER D.D., LAI P., RUTKA J.A., Time trend analysis of mastoidectomy procedures performed in Ontario, 1987–2007, Acta Oto-Laryngologica, 2012, 132 (1), 16–20.
- [9] DE AZEVEDO A.F., DE CASTRO SOARES A.B., GARCHET H.Q.C., DE SOUSA N.J.A., Tympanomastoidectomy: Comparison between canal wall-down and canal wall-up techniques in surgery for chronic otitis media, International Archives of Otorhinolaryngology, 2013, 17 (03), 242–245.
- [10] DE CORSO E., MARCHESE M., SERGI B., RIGANTE M., PALUDETTI G., Role of ossiculoplasty in canal wall down tympanoplasty for middle-ear cholesteatoma: hearing results, The Journal of Laryngology & Otology, 2007, 121 (4), 324–328.
- [11] DECLERCK T., Resultaten na cholesteatoomchirurgie: Een retrospectieve analyse, Master in de Geneeskunde, Gent Universiteit (Be), 05/05/2010.
- [12] GAN R.Z., FENG B., SUN Q., Three-dimensional finite element modeling of human ear for sound transmission, Annals of Biomedical Engineering, 2004, 32, 847–859.
- [13] GAN R.Z., SUN Q., FENG B., WOOD M.W., Acoustic-structural coupled finite element analysis for sound transmission in human ear—pressure distributions, Medical Engineering and Physics, 2006, 28 (5), 395–404.
- [14] GAN R.Z., WANG X., Multifield coupled finite element analysis for sound transmission in otitis media with effusion, The Journal of the Acoustical Society of America, 2007, 122 (6), 3527–3538.
- [15] GARCIA-GONZALEZ A., CASTRO-EGLER C., GONZALEZ- -HERRERA A., Influence of the auditory system on pressure distribution in the ear canal, Journal of Mechanics in Medicine and Biology, 2018, 18 (2), 1850021.
- [16] GELFAND Y.M., CHANG C.J., Ossicular chain reconstruction using titanium versus hydroxyapatite implants, Otolaryngology – Head and Neck Surgery, 2011, 144 (6), 954–958.
- [17] KARAMERT R., ERAVCI F.C., CEBECI S., DÜZLÜ M., ZORLU M.E., YAŞAR N.G., TUTAR H., UĞUR M.B., IRIZ A., BAYAZIT Y.A., Canal wall down versus canal wall up surgeries in the treatment of middle ear cholesteatoma, Turkish Journal of Medical Sciences, 2019, 49 (5), 1426–1432.
- [18] KERCKHOFFS K.G.P., KOMMER M.B.J., VAN STRIEN T.H.L., VISSCHER S.J.A., BRUIJNZEEL H., SMIT A.L., GROLMAN W., The disease recurrence rate after the canal wall up or canal wall down technique in adults, The Laryngoscope, 2016, 126 (4), 980–987.
- [19] KIM M.-B., CHOI J., LEE J.K., PARK J.-Y., CHU H., CHO Y.-S., HONG S.H., CHUNG W.-H., Hearing outcomes according to the types of mastoidectomy: a comparison between canal wall up and canal wall down mastoidectomy, Clinical and Experimental Otorhinolaryngology, 2010, 3 (4), 203–206.
- [20] LEE C.-F., CHEN P.-R., LEE W.-J., CHOU Y.-F., CHEN J.-H., LIU T.-C., Computer aided modeling of human mastoid cavity biomechanics using finite element analysis, EURASIP Journal on Advances in Signal Processing, 2009, 2010 (1), 1–9.
- [21] LEE C.-F., HSU K.-H., CHEN C.-K., Sound Pressure Distribution in the Ear After Radical Mastoidectomy With Meatoplasty, Otology & Neurotology, 2022, 43 (7), 808–813.
- [22] LIU H., ZHAO Y., YANG J., RAO Z., The Influence of piezoelectric transducer stimulating sites on the performance of implantable middle ear hearing devices: a numerical analysis, Micromachines, 2019, 10 (11), 782.
- [23] LUCIDI D., DE CORSO E., PALUDETTI G., SERGI B., Quality of life and functional results in canal wall down vs canal wall up mastoidectomy, Acta Otorhinolaryngologica Italica, 2019, 39 (1), 53–60.
- [24] NEUDERT M., LAILACH S., LASURASHVILI N., KEMPER M., BELEITES T., ZAHNERT T., Cholesteatoma recidivism: comparison of three different surgical techniques, Otology and Neurotology, 2014, 35 (10), 1801–1808.
- [25] QIU J., LI K., XIANG H., XIE J., FAN Z., QIN M., Biomechanical analysis of thorax-abdomen response of vehicle occupant under seat belt load considering different frontal crash pulses, Acta Bioeng. Biomech., 2022, 24 (4), 31–38.
- [26] RAMSEY M.J., MERCHANT S.N., MCKENNA M.J., Postauricular periosteal-pericranial flap for mastoid obliteration and canal wall down tympanomastoidectomy, Otology and Neurotology, 2004, 25 (6), 873–878.
- [27] RODEN D., HONRUBIA V.F., WIET R., Outcome of residual cholesteatoma and hearing in mastoid surgery, The Journal of Otolaryngology, 1996, 25 (3), 178–181.
- [28] SALEM J., BAKUNDUKIZE J., MILINIS K., SHARMA S., Mastoid obliteration versus canal wall down or canal wall up mastoidectomy for cholesteatoma: Systematic review and metaanalysis, American Journal of Otolaryngology, 2022, 44 (2), 103751.
- [29] SHAW E.A., Transformation of sound pressure level from the free field to the eardrum in the horizontal plane, The Journal of the Acoustical Society of America, 1974, 56 (6), 1848–1861.
- [30] STANKOVIC M., Follow-up of cholesteatoma surgery: open versus closed tympanoplasty, ORL, 2007, 69 (5), 299–305. [
- 31] STANKOVIC M.D., Audiologic results of surgery for cholesteatoma: short-and long-term follow-up of influential factors, Otology and Neurotology, 2008, 29 (7), 933–940.
- [32] SYMS M.J., LUXFORD W.M., Management of cholesteatoma: status of the canal wall, The Laryngoscope, 2003, 113 (3), 443–448.
- [33] VAN SPRONSEN E., BRIENESSE P., EBBENS F.A., WATERVAL J.J., DRESCHLER W.A., The Effects of Alterations in the Osseous External Auditory Canal on Perceived Sound Quality, Laryngoscope, 2015, 125 (10), 2362–2365.
- [34] WANG Q., YUAN H., GUO M., MENG L., LONG Z., LONG Y., YANG H., Three-dimensional finite element analysis of a novel interzygapophyseal fusion device for lower cervical spine, Acta of Bioengineering and Biomechanics, 2022, 24 (2), 187–193.
- [35] WEN-JUAN Y., JIAN-WEI M., BAO-LIN H., Numerical Model on Sound-Solid Coupling in Human Ear and Study on Sound Pressure of Tympanic Membrane, Mathematical Problems in Engineering, 2011, 282696.
- [36] YAMAMOTO Y., TAKAHASHI K., MORITA Y., OHSHIMA S., TAKAHASHI S., Long-term follow-up results of canal wall down tympanoplasty with mastoid obliteration using the bone pate plate for canal wall reconstruction in cholesteatoma surgery, Otology and Neurotology, 2014, 35 (6), 961–965.
- [37] ZHANG X., GAN R.Z., Finite element modeling of energy absorbance in normal and disordered human ears, Hearing Research, 2013, 301, 146–155.
- [38] ZHOU K., LIU H., YANG J., ZHAO Y., RAO Z., YANG S., Influence of middle ear disorder in round-window stimulation using a finite element human ear model, Acta Bioeng. Biomech., 2019, 21 (1), 3–12.
- [39] ZHOU L., SHEN N., FENG M., LIU H., DUAN M., HUANG X., Morphology of human ear canal and its effect on sound transmission, International Journal for Numerical Methods in Biomedical Engineering, 2022, 38 (3), e3567.
- [40] ZWISLOCKI J., Analysis of the middle-ear function. Part I: Input impedance, The journal of the Acoustical Society of America, 1962, 34 (9B), 1514–1523.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3e8155c-285b-4cfc-bf01-963e38c39fdc