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Paper presents problem of modeling sound propagation tract basis on orthogonal 

system of Walsh functions. Proposed method allow for determination of sound propagation 

tract model which among others thing should gives possibility to prediction parameters of 

sound source. First of all the technique of Walsh Transform is presented in details. The 

mathematical description of Walsh Transform as well as detail description of calculation 

process were presented. Secondly the example results of preliminary research carried out on 

simulated signals as well as vibrations and hydroacoustics signals acquired during real 

condition measurement of motorboat were presented. At the end obtained results were 

discussed and direction of the future research were pointed. 

 

 

INTRODUCTION 

Issues of modeling is one of the fundamental problems in many areas of science. 

Knowledge of the exact mathematical description of the object provides many opportunities 

both at the stage of conducting research to develop new methods and algorithms through the 

design phase where it gives possibility to check the correctness of the proposed solutions and 

ending on practical applications where knowledge of object model allows for achievement 

better results. Having a model of sound propagation tract opens up new research possibilities 

and it can also be used in practice. Among other things, having such a model it is possible to 

predict how sound with assumed parameters will propagate on the way from the source to the 

point where it will be registered. Having possibility to reverse of such model and having an 

output signal it is possible to conclude about the input signal.  
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Fig. 1. The idea of modeling sound propagation tract 

 

To solve the problem of modeling the sound propagation tract was decided to use the 

methods successfully used in the automation and robotics to identify objects of control. It is 

assumed that sound propagation tract will be treated as a black box of which there is 

absolutely no information. There will be also two signals called input signal and output signal. 

The input signal is recorded original signal which will be propagated in the tract and the 

output signal is the signal recorded after passing through the sound propagation tract. On the 

basis of the recorded those two signals it will be modeled the propagation tract. This idea is 

shown on figure 1. For example, considering the ship as the input signal can be treated 

vibration of the propulsion system recorded using accelerometers situated on the main engines 

constituting the sound source and the output signal will be hydroacoustic signature registered 

in a water area where the ship is located (figure 2). 

 

 
Fig. 2. Example of data used to model the sound propagation tract 
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For modeling it will be used Walsh Transform. Among the piecewise constant functions 

widest practical use have found the Walsh functions which binary nature has a particularly 

major meaning when digital technology is used to perform the task of identification. 

Orthogonal system of Walsh functions are used to identify parameters of dynamics model of 

dynamic objects. Walsh functions are widely used for the analysis and synthesis of dynamical 

systems described by linear and nonlinear differential and intergral equations. These issues 

are solved by using Walsh functions through the so-called operating matrices, which are used 

to transform the differential equation or integral to the corresponding algebraic equation. 

 

1. WALSH TRANSFORM  

Sound propagation tract will be considered as 𝑛-dimensional linear dynamic object 

described by the equation: 

𝑥𝑘+1  =  𝐴𝑥𝑘 +  𝐵𝑢𝑘 (1) 

where: 𝑥𝑘 – the output signal; 𝑢𝑘 – the input signal; 𝐴 – a state matrix; 𝐵 – an input matrix. 

 

The purpose of the identification is to determine the unknown coefficients of the 𝐴 and 

𝐵 based on the measurement vector 𝑥 and 𝑢. 

Vectors 𝑥 and 𝑢 can be presented in the form of the orthogonal development in the 

terms of Walsh basis functions in the form of [4]: 

𝑥𝑘 =  𝐹𝑤𝑘, 𝑢𝑘 =  𝐻𝑤𝑘 (2) 

where: 𝑘 - index of discrete time; 𝑤𝑘 - k-th vector of discrete values Walsh functions; 𝐹 - 

matrix of coefficients of the orthogonal development of the output signal; 𝐻 - matrix of 

coefficients of orthogonal development of the input signal. 

 

After summing up both sides of equation (1) the following expression can be presented 

[4]: 

∑𝑥𝑖+1 = ∑(𝐴𝑥𝑖 + 𝐵𝑢𝑖)

𝑘

𝑖=0

𝑘

𝑖=0

 (3) 

By making simple transformations and substitutions, this equation is reduced to the 

form: 

∑𝐹𝑤𝑖 − 𝐹𝑤𝑘+1 − 𝑧0 = ∑𝐴𝐹𝑤𝑖

𝑘

𝑖=0

+ ∑𝐵𝐻𝑤𝑖

𝑘

𝑖=0

𝑘

𝑖=0

 (4) 

The initial state vector 𝑥0 can be presented in terms of the development of orthogonal 

Walsh functions as follows [4]: 

𝑥0 = [𝑥0, 0, 0, … , 0]𝑤𝑘 (5) 

Using the properties of Walsh functions, can be formulated the following equation [4]: 

𝐹𝑆𝑤𝑘 +  𝐹𝑍𝑤𝑘– 𝑧0𝑤𝑘 =  𝐴𝐹𝑆𝑤𝑘 +  𝐵𝐻𝑆𝑤𝑘  (6) 

where: 𝑆 - operating matrix for the operation of aggregation of Walsh functions; 𝑍 - 

operational matrix for the operation of shift of Walsh functions. 
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Except for matrices 𝐴 and 𝐵, which should be identified all other vectors and matrices 

in the equation (6) are known. 

Assuming that all the matrix coefficients 𝐴 and 𝐵 are unknown number of unknowns is 

equal to 𝑛(𝑛 + 𝑟) where: 𝑛 - length of the output signal, 𝑟 - length of the input signal. 

Since the previous equation contains 𝑛 equations,  so to obtain unambiguous solution 

the set of equations should be extended, taking for example 𝑛 +  𝑟  arbitrarily selected 

samples of Walsh functions [4].  

The extended system of equations can be written as follows [4]: 

𝐹𝑆𝑤𝑘1
+  𝐹𝑍𝑤𝑘1

– 𝑧0𝑤𝑘1
=  𝐴𝐹𝑆𝑤𝑘1

+  𝐵𝐻𝑆𝑤𝑘1
 

𝐹𝑆𝑤𝑘2
+  𝐹𝑍𝑤𝑘2

– 𝑧0𝑤𝑘2
=  𝐴𝐹𝑆𝑤𝑘2

+  𝐵𝐻𝑆𝑤𝑘2
 

… 

𝐹𝑆𝑤𝑘𝑛+𝑟
+  𝐹𝑍𝑤𝑘𝑛+𝑟

– 𝑧0𝑤𝑘𝑛+𝑟
=  𝐴𝐹𝑆𝑤𝑘𝑛+𝑟

+  𝐵𝐻𝑆𝑤𝑘𝑛+𝑟
  

(7) 

By substitution [4]: 

𝑇 = 𝐹𝑆 + 𝐹𝑍 − 𝑥0 

𝑊′ = [𝑤𝑘1
, 𝑤𝑘2

, … , 𝑤𝑘𝑛+𝑟
] 

𝑅 = 𝑇𝑊′ 

𝑃 = 𝐹𝑆𝑊′ 

𝑄 = 𝐻𝑆𝑊′ 

(8) 

system of equations takes the form: 

𝑅 = 𝐴𝐵 𝑃𝑄 (9) 

where:  𝐴𝐵 =  [𝐴 𝐵], 𝑃𝑄 = [
𝑃
𝑄

] 

Assuming that: 𝑑𝑒𝑡 (𝑃𝑄) ≠ 0 values of matrix 𝐴𝐵 can be determined according to [4]: 

𝐴𝐵 = 𝑅(𝑃𝑄)𝑇[𝑃𝑄(𝑃𝑄)𝑇]−1 (10) 

Walsh functions forms a family of binary orthogonal functions belonging to the class of 

piecewise constant functions  [1, 2]. It is convenient to define these functions by using the 

relationship with Rademacher functions, which are defined as [3]: 

𝑅𝑘(𝑡) = {
+1 𝑓𝑜𝑟 

𝑖 − 1

2𝑘+1
≤ 𝑡 <

𝑖

2𝑘+1
 𝑤ℎ𝑒𝑛 𝑖 𝑖𝑠 𝑜𝑑𝑑

−1 𝑓𝑜𝑟 𝑓𝑜𝑟 
𝑖 − 1

2𝑘+1
≤ 𝑡 <

𝑖

2𝑘+1
 𝑤ℎ𝑒𝑛 𝑖 𝑖𝑠 𝑒𝑣𝑒𝑛

 (11) 

where: k = 0,  1,  2,  … ;  i = 1,  2,  … ,  2k+1 

 

The relationship between Walsh functions 𝑤𝑛(𝑡) and Rademacher functions 𝑅𝑘(𝑡) is as 

follows [3, 4]: 
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𝑤0(𝑡) = 1 𝑓𝑜𝑟 0 ≤ 𝑡 < 1 

𝑤𝑛(𝑡) = ∏(𝑅𝑘(𝑡))
𝑛𝑖

 

𝑛

𝑖=0

 𝑓𝑜𝑟 0 ≤ 𝑡 < 1 
(12) 

where: 𝑛𝑖 - the value of 𝑖-th position after conversion of n to binary system. 

 

Using the above definition the first eight Walsh functions can be represented as follows: 

𝑤0(𝑡) = 𝑤000𝑏(𝑡) = 1 

𝑤1(𝑡) = 𝑤001𝑏(𝑡) = 𝑅0(𝑡) 

𝑤2(𝑡) = 𝑤010𝑏(𝑡) = 𝑅1(𝑡) 

𝑤3(𝑡) = 𝑤011𝑏(𝑡) = 𝑅0(𝑡)𝑅1(𝑡) 

𝑤4(𝑡) = 𝑊100𝑏(𝑡) = 𝑅2(𝑡) 

𝑤5(𝑡) = 𝑤101𝑏(𝑡) = 𝑅2(𝑡)𝑅0(𝑡) 

𝑤6(𝑡) = 𝑤110𝑏(𝑡) = 𝑅2(𝑡)𝑅1(𝑡) 

𝑤7(𝑡) = 𝑤111𝑏(𝑡) = 𝑅2(𝑡)𝑅1(𝑡)𝑅0(𝑡) 

(13) 

Walsh functions are conveniently presented in the form of a matrix called the matrix of 

Walsh. The matrix for the first eight Walsh functions is as follows [3]: 

𝑊 =

[
 
 
 
 
 
 
 
1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 1 1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 −1 1 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 1 −1 1 1 −1]

 
 
 
 
 
 
 

 (14) 

With the Walsh functions are related so-called operation matrixes. During the 

identification process are using only two matrixes: aggregation operating and shift operating. 

The operating matrix for the aggregation operation is defined as follows [3]: 

∑𝑤𝑖 = 𝑆𝑤𝑘

𝑘

𝑖=0

 (15) 

where: 𝑆 - operating matrix for the aggregation operation; 𝑤𝑘 - 𝑘-th column of Walsh matrix; 

 

The 𝑆 matrix for 𝑁 =  8 is as follows: 

Volume 18 HYDROACOUSTICS

197



𝑆 =

[
 
 
 
 
 
 
 
4.5 −2 −1 0 −0.5 0 0 0
2 0.5 0 −1 0 −0.5 0 0
1 0 0.5 0 0 0 −0.5 0
0 1 0 0.5 0 0 0 −0.5

0.5 0 0 0 0.5 0 0 0
0 0.5 0 0 0 0.5 0 0
0 0 0.5 0 0 0 0.5 0
0 0 0 0.5 0 0 0 0.5 ]

 
 
 
 
 
 
 

 (16) 

The matrix for the shift operation is defined as [3]: 

𝑤𝑘+1 = 𝑍𝑤𝑘 (17) 

where: 𝑍 - operating matrix for shift operations; 𝑤𝑘 - 𝑘-th column of Walsh matrix. 

 

𝑍 matrix for 𝑁 =  8 has form as follows: 

𝑍 =

[
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0
0 0.5 0 0.5 0 0.5 0 −0.5
0 0 0 0 0 0 1 0
0 −0.5 0 0.5 0 0.5 0 0.5
0 0 0 0 −1 0 0 0
0 −0.5 0 0.5 0 −0.5 0 −0.5
0 0 −1 0 0 0 0 0
0 −0.5 0 −0.5 0 0.5 0 −0.5]

 
 
 
 
 
 
 

 (18) 

 

 

2. RESULTS OF RESEARCH  

The presented method has been implemented in Matlab programing environment. In the 

first phase of research have been performed tests where the input signal was simulated. As 

input signal was used sinusoid of a given parameters (frequency, amplitude, and starting 

phase). It was assumed that the output signal is a signal consisting of the sum of sine waves at 

the same amplitude and starting phase as input signal and frequencies the same as input 

signal, multiplied by 2.6 and divided by 2.6. To the such formulated output signal was added 

random noise signal with amplitude of 1/10 of input single amplitude. After calculation basis 

on input and output signal was created model of sound propagation tract. The values of matrix 

coefficients 𝐴 and 𝐵 were presented in graphic form on figure 3. Created model was used to 

determine the modeled output signal in order to check the correctness of calculations. To the 

input of the model was given simulated input signal and the output signal from the model – 

modeled output signal was compared to the expected signal. The figure 3 shows the waveform 

of the simulated input signal (green color), simulated output signal (blue color) and modeled 

output signal obtained from model (red color). As it can be seen there is a great similarity of 

modeled output signal and to the expected one.  
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Fig. 3. Graphic presentation of calculated matrixes 𝐴 and 𝐵 of created model of sound propagation 

tract 

 

 
Fig. 4. Waveform of simulated and modeled signals; green color – simulated input signal, blue color – 

simulated output signal, red color – modeled output signal 

  
 

In the next phase of researches, were used signals recorded during the test in real 

conditions. The study was done on motorboat  driven by internal combustion engine. During 

measurement were recorded signals from an accelerometer mounted on the engine and 

hydrophone placed in water at about 5 meters from the side of the motorboat. Acquired 

signals waveforms and their amplitude spectra are shown on the figure 6. Basis on those 

signals has been created model of sound propagation tract using previously presented method. 

The calculated matrixes were graphically shown on figures 7. Next to the input of created 

model of sound propagation tract was given the part of recorded input signal and modeled 

output signal was compared with recorded output signal. The example part of input signal 

(green color) as well as original output signal (blue color) and modeled output signal (red 

color) were presented on figure 7. As it can be seen output signal from created model is very 

similar to the originally recorded signal.  
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Fig. 5. Waveform and amplitude spectra of recorded during real condition measurement signals 

 

 
Fig. 6. Graphic presentation of matrixes 𝐴 and 𝐵 of created model of sound propagation tract 

 

Volume 18 HYDROACOUSTICS

200



 
Fig. 7. Part of signals used and obtained in researches; green color – measured input signal, blue color 

– measured output signal, red color – modeled output signal 

 

 

3. SUMMARY 

Summarizing, after a first preliminary studies it can be concluded that the Walsh 

Transform is promising in terms of modeling sound propagation tract. Results obtained 

suggest a fairly high accuracy of the identified model.  

Of course, there is still a lot of issues to resolve. An important part of the modeling 

process is to evaluate the model, so how to determine whether the model describes well the 

real phenomenon? The answer to this question is obviously not easy. The next question is: 

how to determine whether a used set of measurements is representative for all possible 

situations? So how well the model describes the data held outside the range of measurements? 

For this purpose should be carried out much more research in laboratory and real conditions. 

Further studies could also consider whether the created model of sound propagation tract 

subject to the law of superposition. Positive answer to this question opens the way to new 

possibilities of sound propagation analysis using models. 
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