PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

OSL chronostratigraphy for loess deposits from Tyszowce – Poland

Identyfikatory
Warianty tytułu
Konferencja
Conference Proceedings of the 4th Asia Pacific Luminescence and Electron Spin Resonance Dating Conference Nov 23rd-25th, 2015, Adelaide, Australia
Języki publikacji
EN
Abstrakty
EN
The presented work concerns a loess profile located in Tyszowce, in the eastern part of Poland on the Volyn Upland, close to the Ukrainian border. The investigated loess formation is well preserved and is characterised by clear stratigraphic units providing an opportunity to refine the loess chronostratigraphy in Poland. In the paper, we present luminescence ages of loess from the last glacial cycle in SE Poland (up to about 100 ka) together with seven radiocarbon ages. Twenty-one samples were collected and dated using infrared (post-IR IRSL) and blue light stimulated luminescence dating. Two fractions were used, namely polymineral fine grains (4–11 μm) and medium sized quartz grains (45–63 μm). The obtained luminescence ages show very good agreement of both methods in relation to loess deposits, however for the fossil soil units the post-IR IRSL method yields older ages. Radiocarbon dates also confirm luminescence chronostratigraphy for younger units. Moreover, the luminescence results are supported by detailed analyses of grain size distribution, carbonate content and magnetic susceptibility variations allowing to create a comprehensive picture of chronological evolution of this site.
Wydawca
Czasopismo
Rocznik
Strony
307--318
Opis fizyczny
Bibliogr. 50 poz., rys.
Twórcy
autor
  • Department of Radioisotopes, Institute of Physics, Silesian University of Technology, 44-100 Gliwice, Poland
autor
  • Department of Radioisotopes, Institute of Physics, Silesian University of Technology, 44-100 Gliwice, Poland
autor
  • Institute of Geography and Regional Development, University of Wroclaw, 50-137 Wroclaw, Poland
autor
  • Department of Radioisotopes, Institute of Physics, Silesian University of Technology, 44-100 Gliwice, Poland
Bibliografia
  • 1. Antoine P, Rousseau DD, Lautridou JP and Hatte C, 1999. Last Interglacial-Glacial climatic cycle in loess-palaeosol successions of NW France. Boreas 28: 551–563.
  • 2. Antoine P, Rousseau DD, Moine O, Kunesch S, Hatte C, Lang A, Tissoux H and Zöller L, 2009. Rapid and cyclic aeolian deposition during the Last Glacial in European loess: a high-resolution record from Nussloch, Germany. Quaternary Science Reviews 28: 2955–2973.
  • 3. Antoine P, Rousseau DD, Zöller L, Lang A, Munaut AV, Hatte C and Fontugne M, 2001. High resolution record of the last interglacial–glacial cycle in the Nussloch loess palaeosol sequences, Upper Rhine Area Germany. Quaternary International 76–77: 211–229.
  • 4. Antoine P, Rousseau DD, Degeai JP, Moine O, Lagroix F, Kreutzer S, Fuchs M, Hatte Ch, Gauthier C, Svoboda J and Lisa L, 2013. High-resolution record of the environmental response to climatic variations during the Last Interglacial-Glacial cycle in Central Europe: the loess-palaeosol sequence of Dolni Vestonice (Czech Republic) Quaternary Science Reviews 67: 17–38.
  • 5. Berger GW, 2010. An alternate form of probability-distribution plot for De values. Antient TL 28: 11–22.
  • 6. Bortolot VJ, 2000. A new modular high capacity OSL reader system. Radiation Measurements 32: 751–757.
  • 7. Bronk Ramsey C, 2009. Bayesian analysis of radiocarbon dates. Radiocarbon 51: 337–360.
  • 8. Buraczyński J and Wojtanowicz J, 1975. Nowe profile lessowe Grzędy Sokalskiej. (New loess profiles on the Sokal Plateau-Ridge.) Annales UMCS, sec. B.: 28: 1–37. (in Polish).
  • 9. Chapot MS, Roberts HM, Duller GAT and Lai ZP, 2012. A comparison of natural- and laboratory-generated dose response curves for quartz optically stimulated luminescence signals from Chinese Loess. Radiation Measurements 47: 1045–1052.
  • 10. Fedorowicz S, Łanczont M, Bogucki A, Kusiak J, Mroczek P, Adamiec G, Bluszcz A, Moska P and Tracz M, 2013. Loess-paleosol sequence at Korshiv (Ukraine): Chronology based on complementary and parallel dating (TL, OSL), and litho-pedosedimentary analyses. Quaternary International 296: 117–130.
  • 11. Fleming S, 1979. Thermoluminescence techniques in archaeology. Clarendon Press, Oxford.
  • 12. Frechen M, Oches EA and Kohfeld KE, 2003. Loess in Europe – mass accumulation rates during the Last Glacial Period.Quaternary Science Reviews 22: 1467–1493.
  • 13. Fuchs M, Kreutzer S, Rousseau D-D, Antoine P, Hatté C, Lagroix F, Moine O, Gauthier C, Svoboda J and Lisa L, 2013. The loess sequence of Dolni Věstonice, Czech Republic: A new OSL based chronology of the Last Climatic Cycle. Boreas 42: 664–677.
  • 14. Galbraith RF, Roberts RG, Laslett GM, Yoshida H and Olley JM, 1999. Optical dating of single and multiple grains of quartz from Jinmium Rock Shelter, Northern 12 Australia. Part I, experimental design and statistical models. Archaeometry 41: 339–364.
  • 15. Guerin G, Mercier N and Adamiec G, 2011. Dose-rate conversion factors: update. Ancient TL 29: 5–8.
  • 16. Jary Z, 2007. Record of Climate Changes in Upper Pleistocene loess-soil sequences in Poland and western part of Ukraine. Academic Press, Wrocław (in Polish)
  • 17. Jary Z and Ciszek D, 2013. Late Pleistocene loess-palaeosol sequences in Poland and western Ukraine. Quaternary International 296: 37–50.
  • 18. Jersak J, 1973. Lithology and stratigraphy of the loess on the Southern Polish Uplands. Acta Geographica Lodziensia 32 Lodz (in Polish)
  • 19. Kreutzer S, Fuchs M, Meszner S and Faust D, 2012. OSL chronostratigraphy of a loess-palaeosol sequence in Saxnoy/Germany using quartz of different grain sizes. Quaternary Geochronology 10: 102–109.
  • 20. Kukla GJ and An ZS, 1989. Loess stratigraphy in central China. Palaeogeography, Palaeoclimatology, Palaeoecology 72: 203–225.
  • 21. Lang A, Hatté C, Rousseau DD, Antoine P, Fontugne M, Zöller L and Hambach U, 2003. High-resolution chronologies for loess: comparing AMS 14C and optical dating results. Quaternary Science Reviews 22: 953–959.
  • 22. Liu QS, Banerjee SK, Jackson MJ, Chen F, Pan Y and Zhu R, 2004. Determining the climatic boundary between the Chinese loess and palaeosol: evidence from aelian coarse-grained magnetite. Geophysical Journal International 156(2): 267–274.
  • 23. Lowick SE, Preusser F, Pini R and Ravazzi C, 2010. Underestimation of fine grain quartz OSL dating towards the Eemian: Comparison with palynostratigraphy from Azzano Decimo, northeastern Italy. Quaternary Geochronology5: 583–590.
  • 24. Markovic SB, Bokhorst MP, Vandenberghe J, McCoy WD, Oches EA and Hambach U, 2008. Late Pleistocene loess-palaeosol sequences in the Vojvodina region, north Serbia. Journal of Quaternary Science 23: 73–84.
  • 25. Markovic SB, Stevens T, Kukla GJ, Hambach U, Fitzsimmons KE, Gibbard P, Buggle B, Zech M, Guo Z, Hao Q, Wu H, Ken O’Hara D, Smalley J, Ujvari G, Sümegi P, Timar-Gabor A, Veres D, Sirocko F, Vasilijević A, Jary Z, Svensson A, Jović V, Lehmkuhl F, Kovacs J and Svircev Z, 2015. Danube loess stratigraphy - Towards a pan-European loess stratigraphic model. Quaternary Science Reviews 148: 228–258.
  • 26. Martinson DG, Pisias NG, Hays JD, Imbrie J, Moore TC and Shackleton NJ, 1987. Age dating and the orbital theory of the ice ages: development of a high-resolution 0 to 300.000 year chronostratigraphy. Quaternary Research 27: 1–29.
  • 27. Maruszczak H, 1974. Gleby kopalne i stratygrafia lessów Grzędy Sokalskiej (sum. Fossil soils and the Sokal Range loess stratigraphy). Annales UMCS, sec. B, 26: 27–66. (in Polish).
  • 28. Maruszczak H, 1991. Stratigraphical differentiation of Polish loesses. In: Maruszczak, H., (Eds.), Main section of loesses in Poland. Wydawnictwo UMCS, Lublin, pp. 13–35 (in Polish).
  • 29. Mejdahl V, 1979. Thermoluminescence dating: beta-dose attenuation in quartz grains. Archaeometry 21: 61–72.
  • 30. Meszner S, Kreutzer S, Fuchs M and Faust D, 2013. Late Pleistocene landscape dynamics in Saxony, Germany: Paleoenvironmental reconstruction using loess-paleosol sequences. Quaternary International 296: 94–107.
  • 31. Moska P, Adamiec G and Jary Z, 2012. High resolution dating of loess profile from Biały Kościół, south-west Poland.Quaternary Geochronology 10: 87–93.
  • 32. Moska P, Jary Z, Adamiec G, Bluszcz A, 2015. OSL chronostratigraphy of a loess-palaeosol sequence in Złota using quartz and polymineral fine grains. Radiation Measurements 81: 23–31.
  • 33. Murray AS and Wintle AG, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements 32: 57–73.
  • 34. Murray AS and Olley JM, 2002. Precision ans accuracy in the optically stimulated luminescence dating of sedimentary quartz: A status review. Geochronometria 21: 1–16.
  • 35. Obreht I, Zeeden CH, Hambach U, Veres D, Marković S, Bösken J, Svirčev Z, Bačević N, Gavrilov M and Lehmkuhl F, 2016. Tracing the influence of Mediterranean climate on Southeastern Europe during the past 350,000 years. Scientific Reports 6: 36334.
  • 36. Prescott JR and Stephan LG, 1982. The contribution of cosmic radiation to the environmental dose for thermoluminescence dating. Latitude, altitude and depth dependencies. TLS II-1: 16–25.
  • 37. Pye K, 1987. Aaeolian Dust and Dust Deposits. Academic Press, London, pp. 1– 256.
  • 38. Pye K, 1995. The nature, origin and accumulation of loess. Quaternary Science Reviews14: 653– 667.
  • 39. Rees-Jones J, 1995. Optical dating of young sediments using fine-grain quartz. Ancient TL13: 9–14.
  • 40. Southon JR, Staff RA, Turney CSM and van der Plicht J, 2013. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0–50,000 Years cal BP. Radiocarbon 55: 1889–1903.
  • 41. Stevens T, Marković S, Zech M, Hambach U and Sümegi P, 2011. Dust deposition and climate in the Carpathian Basin over an independently dated last glacial-interglacial cycle. Quaternary Science Reviews 30: 662–681.
  • 42. Thiel C, Buylaert JP, Murray A, Terhorst B, Hofer I, Tsukamoto S and Frechen M, 2011. Luminescence dating of the Stratzing loess profile (Austria) – Testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International 234(1–2): 23–31.
  • 43. Timar-Gabor A, Buylaert J-P, Guralnik B, Trandafir-Antohi O, Constantin D, Anechtei V, Jain M, Murray AS, Porat N, Hao Q and Wintle AG, in press. On the importance of grain size in luminescence dating using quartz. Radiation Measurements.
  • 44. Timar-Gabor A, Vanderberghe D, Vasiliniuc S, Panaiotu CE, Panaiotu CG, Dimofte D, Cosma C, 2011. Optical dating of Romanian loess: A comparison between silt-sized and sand-sized quartz. Quaternary International 240: 62–70.
  • 45. Timar A, Vanderberghe D, Panaiotu CE, Panaiotu CG, Necula C, Cosma C and Van den Haute P, 2010. Optical dating of Romanian loess using fine-grained quartz. Quaternary Geochronology 5: 143–148.
  • 46. Tyurin IV, 1935. Comparative study of the methods for the determination of organic carbon in soils and water extracts of soils. Dokuchaiev Soil Inst. Stud, Genesis Geogr. Soils, 139–158.
  • 47. Vandenberghe J and Nugteren G, 2001. Rapid climatic changes recorded in loess succession. Global and Planetary Change28: 1–9.
  • 48. Wild EM, Steier P, Fischer P and Höflmayer F, 2013. 14C dating of humic acids from bronze and iron age plant remains from the eastern Mediterranean. Radiocarbon 55: 599–607.
  • 49. Wintle AG and Adamiec G, 2017. Optically stimulated luminescence signals from quartz: A review. Radiation Measurements 98: 10–33.
  • 50. Wojtanowicz J and Buraczyński J, 1978. Materiały do chronologii bezwzględnej lessów Grzędy Sokalskiej (Materials to the Absolute Chronology of the loesses of Grzęda Sokalska). Annales UMCS, sec. B30–31: 37–54.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3e190f6-18b8-416e-badb-9577f999d056
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.