PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Biokatalityczna transformacja epoksy- oraz winylofosfonianów

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Biocatalitic Transformation of epoxy- and vinylphosphonates
Języki publikacji
PL EN
Abstrakty
PL
Przedmiotem badań była selektywna transformacja dwóch grup związków fosforoorganicznych epoksy- oraz winylofosfonianów do odpowiednich pochodnych, z wykorzystaniem całych komórek bakterii lub grzybów. Aktywność hydrolityczną względem modelowego epoksyfosfonianu wykazywał tylko szczep Aspergillus niger, podczas gdy szczepy Cladosporium herbarum oraz Fusarium oxysporum zdolne były do degradacji trwałego wiązania C-P w winylofosfonianach, w zadanych warunkach procesu.
EN
The subject of research was the selective transformation of the two groups of organophosphorus compounds, epoxy- and vinylphosphonates, to the corresponding derivatives, using whole cells of bacteria or fungi. Hydrolytic activity towards model epoxphosphonate was observed only in the case of Aspergillus niger, whereas Cladosporium herbarum and Fusarium oxysporum were able to degrade stable C-P bond in vinylphosphonates, under defined experimental conditions.
Czasopismo
Rocznik
Strony
273--280
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Zakład Chemii Bioorganicznej, Wydział Chemiczny, Politechnika Wrocławska, Wrocław
autor
  • Zakład Chemii Bioorganicznej, Wydział Chemiczny, Politechnika Wrocławska, Wrocław
  • Zakład Chemii Bioorganicznej, Wydział Chemiczny, Politechnika Wrocławska, Wrocław
  • Zakład Chemii Bioorganicznej, Wydział Chemiczny, Politechnika Wrocławska, Wrocław
Bibliografia
  • 1.Schmid, A., Dordick J., S., Hauer B., Kiener A., Wubbolts M., Witholt B.: Industrial biocatalysis today and tomorrow. Nature 2001, 409, 258–268.
  • 2. Kolodiazhnyi O. I.: Chiral hydroxy phosphonates: synthesis, configuration and biological properties. Russian Chemical Reviews 2006, 75, 3, 227–253.
  • 3. Patel D. V., Rielly-Gauvin K., Ryono D. E., Free C. A., Rogers W. L., Smith S.A., DeForrest J. M., Oehl R. S., Petrillo E. W.: α-Hydroxyphosphinyl-based inhibitors of human renin. Journal of Medicinal Chemistry 1995, 38, 4557–4569.
  • 4. Yokomatsu T., Murano T., Akiyama T., Koizumi J., Shimeno H., Tsuji Y., Soeda S., Shimeno H.: Synthesis of non-competitive inhibitors of sphingomyelinases with significant activity. Bioorganic and Medicinal Chemistry Letters 2003, 13, 229–236.
  • 5. Yokomatsu T., Yamagishi T., Suemune K., Yoshida Y., Shibuya S.: Enantioselective synthesis of threo-α, β-dihydroxyphosphonatesby asymmetric dihydroxylation of l(E-)-alkenylphosphonates with AD-mix reagents. Tetrahedron 1998, 54, 767–780.
  • 6. Summerer S., Hanano A., Utsumi S., Arand M., Schuber F., Blée E.: Stereochemical features of the hydrolysis of 9,10-epoxystearic acid catalysed by plant and mammalian epoxide hydrolases. Biochemical Journal 2002, 366, 471–80.
  • 7. Xu W., Xu J.H., Pan J., Gu O., Wu X.Y.: Enantioconvergent hydrolysis of styrene epoxides by newly discovered epoxidehydrolases in mung bean. Organic Letters 2006, 8, 1737–1740.
  • 8. Choi W.J., Choi C.Y., de Bont J.A.M., Weijers C.A.G.M.: Continuous production of enantiopure 1, 2-epoxyhexane by yeast epoxide hydrolase in a two-phase membrane bioreactor. Applied Microbiology and Biotechnology 2000, 54, 641–646.
  • 9. Smit M.S.: Fungal epoxide hydrolases: new landmarks in sequence-activity space. Trends in Biotechnology 2004, 22, 3, 123–129.
  • 10. Liu Z., Michel J., Wang Z., Witholt B., Li Z.: Enantioselective hydrolysis of styrene oxide with the epoxide hydrolase of Sphingomonas sp. HXN-200. Tetrahedron Asymmetry 2006, 17, 47–52.
  • 11. Orru R.V. A., Faber K.: Stereoselectivities of microbial epoxide hydrolases. Current Opinion in Chemical Biology 1999, 3, 16–21.
  • 12. Choi W.J.: Biotechnological production of enantiopure epoxides by enzymatic kinetic resolution. Applied Microbiology and Biotechnology 2009, 4, 239–247.
  • 13. Cleij M., Archelas A., Furstoss R.: Microbiological transformations 43. Epoxide hydrolases as tools for the synthesis of enantiopure α-methylstyrene oxides: A new and efficient synthesis of (S)-ibuprofen. Journal of Organic Chemistry1999, 64, 5029–5035.
  • 14. Manoj K.M., Archelas A., Baratti J., Furstoss R.: Microbiological transformations. Part 45: A green chemistry preparative scale synthesis of enantiopure building blocks of Eliprodil: elaboration of a high substrate concentration epoxide hydrolasecatalyzed hydrolytic kinetic resolution process. Tetrahedron 2001, 57, 695–701.
  • 15. Pedragosa-Moreau S., Morisseau C., Baratti J., Zylber J., Archelas A., Furstoss R.: Microbiological transformations 37. An enantioconvergent synthesis of the β-blocker using a combined chemoenzymatic approach. Tetrahedron 1997, 53, 9707–9714.
  • 16. Baldascini H., Ganzeveld K.J., Janssen D.B., Beenackers A.A.C.M.: Effect of mass transfer limitations on the enzymatic kinetic resolution of epoxides in a twoliquid-phase system. Biotechnology and Bioengineering 2001, 73, 44–54.
  • 17. Cristau H.-J., Pirat J.-L., Drag M., Kafarski P.: Regio- and stereoselective synthesis of 2-amino-1-hydroxy-2-aryl ethylphosphonic esters. Tetrahedron Letters 2000, 41, 9781–9785.
  • 18. Cristau H.-J., Mbianda X.Y., Geze A., Beziat Y., Gasc M.-B.: Dioxirane oxidation of substituted vinylphosphonates: a novel efficient route to 1,2-epoxyalkylphosphonates. Journal of Organometallic Chemistry 1998, 571, 189–193.
  • 19. Forlani G., Klimek-Ochab M., Jaworski J., Lejczak B., Picco A.M.: Phosphonoacetic acid utilization by fungal isolates: occurrence and properties of a phosphonoacetate hydrolase in some penicillia. Mycological Research 2006, 110, 1455–1463.
  • 20. Mały A., Lejczak B., Kafarski P.: Quinine as chiral discriminator for determination of enantiomeric excess of diethyl 1,2-dihydroxyalkanephosphonates. Tetrahedron Asymmetry 2003, 14, 1019–1024.
  • 21. Karboune S., Archelas A., Baratti J.: Properties of epoxide hydrolase from Aspergillus niger for the hydrolytic kinetic resolution of epoxides in pure organic media. Enzyme and Microbial Technology 2006, 39, 318–324.
  • 22. Kmiecik N., Klimek-Ochab M., Brzezińska-Rodak M., Majewska P., Żymańczyk-Duda E.: Chiral phosphinate degradation by the Fusarium Species: scope and limitation of the process. Biotechnology Research International 2013, 10.1155/2013/927361.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3dfd4cd-5790-4bd7-8441-d0e1a1e3c66b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.