PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Calculating surface current distribution in antenna array in the presence of mutual coupling by analytical solving of Pocklington’s integral equation

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this article, the current distribution of an antenna array in the presence of mutual coupling is calculated analytically by solving Pocklington’s integral equation. Blockpulse and Galerkin’s functions are used for numerical solving of Pocklington’s integral equation. In this work, the surface current distribution can be achieved for an antenna array in receiving mode, with any arbitrary structure and various numbers of elements. In all previous works, the authors have been tried to solve Pocklington’s integral equation for a single half dipole antenna in transmitting mode. Pocklington’s equation is somehow difficult to work with because of the singularity and existence of a sharp peak for a small value of wire’s radius. In order to calculate surface current distribution, for thin wires, singularity part is extracted from the kernel in aforementioned integral. Hence, the kernel is decomposed into singular and nonsingular parts. An inter-element mutual coupling effect between array elements and self-coupling for each element are assumed in this case. The validity of the proposed methodology is tested by numerical simulation results. The accuracy of the proposed method is evaluated by the multiple signal classification (MUSIC) algorithm for different scenarios to direction of arrival (DOA) estimation.
Rocznik
Strony
65--79
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wz.
Twórcy
autor
  • Department of Electrical Engineering, Shiraz Branch Islamic Azad University, Shiraz, Iran
Bibliografia
  • [1] Gupta I.J., Ksienski A.A., Effect of mutual coupling on the performance of adaptive arrays, IEEE Transactions on Antennas and Propagation, vol. 31, no. 5, pp.785–791 (1983).
  • [2] Wallace J.W., Jensen M.A., Mutual coupling in MIMO wireless system: a rigorous network theory analysis, IEEE Transactions on Wireless Communications, vol. 3, no. 4, pp. 1317–1325 (2004).
  • [3] Pasala K.M., Friel E.M., Mutual coupling effects and their reduction in wideband direction of arrival estimation, IEEE Transactions on Aerospace and Electronic Systems, vol. 30, no. 4, pp. 1116–1122 (1994).
  • [4] Parhizgar N., Alighanbari A., Masnadi Shirazi M.A., Sheikhi A., Mutual Coupling Compensation for a Practical VHF/UHF Yagi-Uda Antenna, ET Microwaves, Antennas & Propagation, vol. 7, no. 13, pp. 1072–1083 (2013).
  • [5] Lui H.S., Hui H.T., Effective mutual coupling compensation for direction-of-arrival estimations using a new, accurate determination method for the receiving mutual impedance, Journal of Electromagnetic Waves and Applications, vol. 24, no. 2–3, pp. 271–281 (2010).
  • [6] Parhizgar N., Alighanbari A., Masnadi Shirazi M.A., Sheikhi A., A modified decoupling scheme for receiving antenna arrays with application to DOA estimation, International Journal of RF and Microwave Computer-Aided Engineering, vol. 23, no. 2, pp. 246–259 (2013).
  • [7] Parhizgar N., Masnadi-Shirazi M.A., Alighanbari A., Sheikhi A., Adaptive nulling of a linear dipole array in the presence of mutual coupling, International Journal of RF and Microwave Computer-Aided Engineering, vol. 24, no. 1, pp. 30–38 (2014).
  • [8] Hui H.T., A practical approach to compensate for the mutual coupling effect in an adaptive dipole array, IEEE Transactions on Antennas and Propagation, vol. 52, no. 5, pp. 1262–1269 (2004).
  • [9] Richmond J.H., Digital computer solutions of the rigorous equations for scattering problems, Proceedings of the IEEE, vol. 53, no. 8, pp. 796–804 (1965).
  • [10] Pocklington H.C., Electrical oscillations in wires, Proceedings of the Cambridge Philosophical Society, vol. 9, no. 7, pp. 324–332 (1897).
  • [11] Werner D.H., Werner P.L., Breakall J.K., Some computational aspects of Pocklington’s electric field integral equation for thin wires, IEEE Transactions on Antennas and Propagation, vol. 42, no. 4, 561–563 (1994)
  • [12] Shamsi M., Razzaghi M., Nazarzadeh J., Shafiee M., Haar wavelets method for solving Pocklington’s integral equation, Kybernetika, vol. 40, no. 4, pp. 491–500 (2004).
  • [13] Wang G., Application of wavelets on the interval to the analysis of thin-wire antennas and scatterers, IEEE Transactions on Antennas and Propagation, vol. 45, no. 5, pp. 885–893 (1997).
  • [14] Wagner R., ChewW., A study of wavelets for the solution of electromagnetic integral equations, IEEE Transactions on Antennas and Propagation, vol. 43, no. 5, pp. 802–810 (1995).
  • [15] Bayjja M., Boussouis M., Touhami N.A., Zeljami K., Comparison between solution of Pocklington’s and Hallen’s integral equations for thin wire antennas using method of moments and Haar wavelet, International Journal of Innovation and Applied Studies, vol. 12, no. 4, pp. 931–942 (2015).
  • [16] Mohamed B., Moubadir M., Boussouis M., Touhami N.A., Analysis of dipole antennas using moment methods and Haar wavelet, International Conference onWireless Networks and Mobile Communications (WINCOM), pp. 1–6 (2015).
  • [17] Acharjee B., Matin Md. A., Analysis of Wire Antennas by Solving Pocklington’s Integral Equation Using Wavelets, 5th International Conference on Electrical and Computer Engineering (ICECE) Dhaka, Bangladesh, pp. 778–782 (2008).
  • [18] Forati E., Mueller A.D., Yarandi P.G., Hanson G.W., A new formulation of Pocklington’s equation for thin wires using the exact kernel, IEEE Transactions on Antennas and Propagation, vol. 59, no. 11, pp. 4355–4360 (2011).
  • [19] Balanis C.A., Antenna Theory: Analysis and Design, John Wiley & Sons (2008).
  • [20] Harrington R.F., Field Computation by Moment Methods, IEEE Press (1993).
  • [21] Deb A., Sarkar G., Sen S.K., Block pulse functions, the most fundamental of all piecewise constant basis functions, International Journal of System Science, vol. 25, no. 2, pp. 351–363 (1994).
  • [22] Ludick D.J., Maaskant R., Davidson D.B., Jakobus U., Mittra R., de Villiers D., Efficient analysis of large aperiodic antenna arrays using the domain Green’s function method, IEEE Transactions on Antennas and Propagation, vol. 62, no. 4, pp. 1579-1588 (2014).
  • [23] Wu T.T., Introduction to linear antennas, Antenna Theory, Part I, Collin, R.E., Zucker, F.J. (eds.), Chapter 8, McGraw-Hill (1969).
  • [24] Stutzman W.L., Thiele G.A., Antenna theory and design, John Wiley & Sons (2012).
  • [25] Balanis C., Advanced engineering electromagnetics, John Wiley & Sons (1999).
  • [26] Elliot R.S., Antenna theory & design, John Wiley & Sons (2006).
  • [27] RawleW.D., The method of moments: A numerical technique for wire antenna design, High Frequency Electronics, vol. 5, pp. 42–47 (2006)
  • [28] Richmond J., A wire-grid model for scattering by conducting bodies, IEEE Transactions on Antenna Propagation, vol. 14, no. 6, pp. 782–786 (1966).
  • [29] Sidi A., Numerical quadrature rules for some infinite range integrals, Mathematics of Computation, vol. 38, no. 157, pp. 127–142 (1982).
  • [30] Thiele G.A., Wire Antennas, Computer Techniques for ElectroMagnetics, Mittra, R. (ed.), Chapter 2, Elmsford, Pergamon Press (1973).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3dba797-6ccb-48e9-b748-929dc8c3bca2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.