Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
The use of artificial neural networks to predict the electrical demand
Języki publikacji
Abstrakty
Zaproponowano model sztucznej sieci neuronowej służący do przewidywania zapotrzebowania na moc elektryczną. Opracowana została odpowiednia architektura tej sieci pod względem ilości warstw jak również ilości neuronów w poszczególnych warstwach. Dane wejściowe do modelu stanowiły: obciążenie dobowe z dokładnością do 1 h oraz dzień tygodnia, którego to obciążenie dotyczyło. Natomiast na wyjściach sieci otrzymano przewidywane zapotrzebowanie na moc elektryczną dla dnia następnego. Sieć została nauczona na danych dotyczących obciążenia części Instytutu Techniki Cieplnej i Stołówki Centralnej Politechniki Warszawskiej z przedziału czasowego od 08.10.2011 do 15.10.2011 a przetestowana na danych z przedziału od 16.10.2011 do 23.10.2011.
Proposed artificial neural network model is used to predict the demand for electric power. Appropriate architecture has been developed that network in terms of number of layers and number of neurons in each layer. Inputs to the model included: daily charge in 1 hour and day of the week, which is related to the load. However, the network received the outputs of the expected demand for electric power for the next day. The network was taught to load the data from the Institute of Thermal Technology and Warsaw University of Central Canteens of the time period from 08.10.2011 to 15.10.2011 and tested on data from a range of 10/16/2011 to 10/23/2011
Wydawca
Czasopismo
Rocznik
Tom
Strony
26--31
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
- Wydział Mechaniczny Energetyki i Lotnictwa Politechniki Warszawskiej
autor
- Wydział Mechaniczny Energetyki i Lotnictwa Politechniki Warszawskiej
autor
- Wydział Mechaniczny Energetyki i Lotnictwa Politechniki Warszawskiej
Bibliografia
- [1] Abraham, A. and Nath, B.: A neuro-fuzzy approach for modelling electricity demand in Victoria. Applied Soft Computing 1, 2001, 127–138.
- [2] Adam, N. B., Elahee, M. and Dauhoo, M.: Forecasting of peak electricity demand in mauritius using the non-homogeneous gompertz diffusion process. Energy 36, 2011, 6763–6769.
- [3] Ameri, M., Kiaahmadi, F. and Khanaki, M. M.: Comparison of a dual-fuel internal combustion engine performance for CNG and gasoline fuels. Journal of Power Technologies 92(4), 2012, 214–240.
- [4] Amjady, N. and Keynia, F.: Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm. Energy 34, 2009, 46–57.
- [5] Azadeh, A., Ghaderi, S. and Sohrabkhani, S.: A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran. Energy Policy 36, 2008, 2637–2644.
- [6] Azadeh, A., Ghaderi, S., Tarverdian, S. and Saberi, M.: Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption. Applied Mathematics and Computation 186, 2007, 1731–1741.
- [7] Beccali, M., Cellura, M., Brano, V. L. and Marvuglia, A.: Forecasting daily urban electric load profiles using artificial neural networks. Energy Conversion and Management 45, 2004, 2879–2900.
- [8] Bini, R., Prima, M. D. and Guercio, A.: Organic Rankine cycle (ORC) in biomass plants: an overview on different applications. Turboden SRL, 2010.
- [9] Bozorgmehri, S. and Hamedi, M.: Modeling and optimization of anode-supported solid oxide fuel cells on cell parameters via artificial neural network and genetic algorithm. Fuel Cells 12(1), 2012, 11–23.
- [10] Budzianowski, W.: Negative net CO2 emissions from oxy-decarbonization of biogas to H2. International Journal of Chemical Reactor Engineering 8, 2010, A156.
- [11] Cai, Y., zhou Wang, J., Tang, Y. and chen Yang, Y.: An efficient approach for electric load forecasting using distributed art (adaptive resonance theory) & hs-artmap (hyper-spherical artmap network) neural network, Energy 36, 2011, 1340–1350.
- [12] Chaichana, K., Patcharavorachot, Y., Chutichai, B., Saebea, D., Assabumrungrat, S. and Arpornwichanop, A.: Neural network hybrid model of a direct internal reforming solid oxide fuel cell, International Journal of Hydrogen Energy 37(3), 2012, 2498–2508.
- [13] Demuth, H., Beale, M. and Hagan, M.: Neural network toolboxTM 6 user’s guide matlab. Technical report.
- [14] Foresee, F. and Hagan, M.: Gauss-newton approximation to bayesian regularization. Proceedings of the 1997 International Joint Conference on Neural Networks.
- [15] Hobbs, B. F., Helman, U., Jitprapaikulsarn, S., Konda, S. and Maratukulam, D.: Artificial neural networks for short-term energy forecasting: Accuracy and economic value. Neurocomputing 23, 1998, 71–84.
- [16] Hsu, C.-C. and Chen, C.-Y.: Regional load forecasting in Taiwan-applications of artificial neural networks, Energy Conversion and Management 44, 2003, 1941–1949.
- [17] Kavaklioglu, K., Ceylan, H., Ozturk, H. K. and Canyurt, O. E.: Modeling and prediction of turkey’s electricity consumption using artificial neural networks. Energy Conversion and Management 50, 2009, 2719–2727.
- [18] Kiartzis, S., Bakirtzis, A. and Petridis, V.: Short-term load forecasting using neural networks. Electric Power Systems Research 33, 1995, 1–6.
- [19] Kishor, N. and Mohanty, S.: Fuzzy modeling of fuel cell based on mutual information between variables. International Journal of Hydrogen Energy 35(8), 2010, 3620–3631.
- [20] Kotowicz, J. and Bartela, T.: Optimisation of the connection of membrane ccs installation with a supercritical coal-fired power plant. Energy 38(1), 2012, 118–127.
- [21] Paarmann, L. D. and Najar, M. D.: Adaptive online load forecasting via time series modeling. Electric Power Systems Research 32, 1995, 219–225.
- [22] Sforna, M. and Proverbio, F.: A neural network operator oriented short-term and online load forecasting environment. Electric Power Systems Research 33, 1995, 139–149.
- [23] Sisworahardjo, N., Yalcinoz, T., El-Sharkh, M. and Alam, M.: Neural network model of 100 w portable pem fuel cell and experimental verification. International Journal of Hydrogen Energy 35(17), 2010, 9104–9109.
- [24] Tamimi, M. and Egbert, R.: Short term electric load forecasting via fuzzy neural collaboration. Electric Power Systems Research 56, 2000, 243–248.
- [25] Veyo, S. E., Lundberg, W. L., Vora, S. D. and Litzinger, K. P.: Tubular sofc hybrid power system status. ASME Conference Proceedings 2003(36851), 649–655.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3d8ed19-cc9d-4559-8498-ca86fee760b6