Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wykorzystanie naturalnych materiałów węglowych w usuwaniu barwnika azowego Direct Orange 26 z roztworu wodnego
Języki publikacji
Abstrakty
The aim of the study was to assess the possibility of using natural carbonaceous materials such as peat, lignite, and hard coal as low-cost sorbents for the removal of Direct Orange 26 azo dye from an aqueous solution. The adsorption kinetics and the influence of experimental conditions were investigated. The following materials were used in the research: azo dye Direct Orange 26, Spill-Sorb “Fison” peat (Alberta, Canada), lignite (Bełchatów, Poland), and hard coal (“Zofiówka” mine, Poland). The morphology and porous structure of the absorbents were tested. Dye sorption was carried out under static conditions, with different doses of sorbents, pH of the solution, and ionic strength. It was observed that the adsorption of Direct Orange 26 dye on all three adsorbents was strongly dependent on the pH of the solution, while the ionic strength of the solution did not affect the adsorption efficiency. The adsorption kinetics were consistent with the pseudo-second-order reaction model. The stage which determines the rate of adsorption is the diffusion of the dye in the near-surface layer. The process of equilibrium adsorption of Direct Orange 26 dye on all tested adsorbents is best described by the Langmuir isotherm. The maximum adsorption capacity for peat, brown coal and hard coal was 17.7, 15.1 and 13.8 mg/g, respectively. The results indicate that peat, lignite, and hard coal can be considered as alternative adsorbents for removing azo dyes from aqueous solutions.
Celem pracy była ocena możliwości wykorzystania naturalnych materiałów węglowych takich jak torf, węgiel brunatny i węgiel kamienny jako niskokosztowych sorbentów do w usuwaniu barwnika azowego Direct Orange 26 z roztworu wodnego. Zbadano kinetykę adsorpcji oraz wpływ dawki sorbentu, pH roztworu oraz siły jonowej na skuteczność sorpcji. W badaniach wykorzystano barwnik azowy Direct Orange 26, torf Spill-Sorb „Fison” (Alberta, Kanada), węgiel brunatny (Bełchatów,Polska) oraz węgiel kamienny („Zofiówka”, Polska). Wykonano badania morfologii oraz struktury porowatej absorbentów. Sorpcję barwnika prowadzono w warunkach statycznych, przy różnych dawkach sorbentów, pH roztworu i sile jonowej. Zaobserwowano, że adsorpcja barwnika Direct Orange 26 na wszystkich trzech adsorbentach była silnie zależna od pH roztworu, natomiast siła jonowa roztworu nie wpływała na efektywność adsorpcji. Kinetyka adsorpcji była zgodna z modelem reakcji pseudo-drugiego rzędu. Etapem decydującym o szybkości adsorpcji jest dyfuzja barwnika w warstwie przypowierzchniowej. Proces adsorpcji równowagowej barwnika Direct Orange 26 na wszystkich badanych adsorbentach najlepiej opisuje izoterma Langmuira. Maksymalne zdolności adsorpcyjne dla torfu, węgla brunatnego i węgla kamiennego wynosiły odpowiednio 17,7, 15,1 i 13,8 mg/g. Wyniki wskazują, że torf, węgiel brunatny i węgiel kamienny mogą być rozważane jako alternatywne adsorbenty do usuwania barwników azowych z roztworów wodnych.
Czasopismo
Rocznik
Tom
Strony
47--56
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Chemistry, Military University of Technology, Warsaw, Poland
autor
- Faculty of Environmental Engineering, Geomatics and Renewable Energy, Kielce University of Technology, Poland
autor
- Institute of Chemistry, Military University of Technology, Warsaw, Poland
Bibliografia
- 1. Al-Ghouti, M.A. & Da'ana, D.A. (2020). Guidelines for the use and interpretation of adsorption isotherm models: A review. Journal of Hazardous Materials, 393, 122383. DOI:10.1016/j.jhazmat.2020.122383
- 2. Allen, S.J., Mckay,G. & Porter, J.F. (2004). Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. Journal of Colloid and Interface Science, 280, pp. 322–333. DOI:10.1016/j.jcis.2004.08.078
- 3. Bansal, R.C. & Goyal, M. (2005). Activated Carbon Adsorption, Taylor & Francis, CRC Press, Boca Raton, 2005. DOI:10.1201/9781420028812
- 4. Bhatti, H.N., Safa, Y., Yakout, S.M., Shair, O.H., Iqbal, M. & Nazir, A. (2020). Efficient removal of dyes using carboxymethyl cellulose/alginate/polyvinyl alcohol/rice husk composite: Adsorption/desorption, kinetics and recycling studies. International Journal of Biological Macromolecules, 150, pp. 861–870. DOI:10.1016/j.ijbiomac.2020.02.093
- 5. Dzieniszewska, A. & Kyzioł-Komosińska, J. (2018). Zdolności sorpcyjne wybranych substancji bogatych w materię organiczną w stosunku do barwników, Polska Akademia Nauk, Komitet Inżynierii Środowiska, Monografie IPIS PAN, Nr 142, Zabrze, Polska.
- 6. Goswami, L., Kushwaha, A., Kafle, S.R. & Kim, B.-S. (2022). Surface modification of biochar for dye removal from wastewater. Catalysts, 12, 817. DOI:10.3390/catal12080817
- 7. Gupta, V.K. & Suhas (2009). Application of low-cost adsorbents for dye removal – A review. Journal of Environmental Management, 90, pp. 2313–2342. DOI:10.1016/j.jenvman.2008.11.017
- 8. Hassani, A., Vafaei, F., Karaca,S. & Khataee, A.R. (2014). Adsorption of a cationic dye from aqueous solution using Turkish lignite: Kinetic, isotherm, thermodynamic studies and neural network modeling. Journal of Industrial and Engineering Chemistry, 20, pp. 2615– 2624. DOI:10.1016/j.jiec.2013.10.049
- 9. Herrera-González, A.M., Reyes-Angeles, M.C. & Peláez-Cid, A.A. (2021). Adsorption of anionic dyes using composites based on basic polyelectrolytes and physically activated carbon. Desalination and Water Treatment, 230, 346–358. DOI:10.5004/dwt.2021.27445
- 10. Izadyar, S. & Rahimi, M. (2007). Use of beech wood sawdust for adsorption of textile dyes. Pakistan Journal of Biological Sciences, 10, 2, pp. 287–293.
- 11. Kajjumba, G.W., Emik, S., Öngen, A., Özcan, H.K. & Aydın, S. (2018). Modelling of adsorption kinetic processes – errors, theory and application. [in:] Advanced sorption process applications, Edebali, S. (Ed), IntechOpen, Rijeka, pp. 1–19.
- 12. Kaushik, C.P., Tuteja, R., Kaushik, N. & Sharma, J.K. (2009). Minimization of organic chemical load in direct dyes effluent using low cost adsorbents. Chemical Engineering Journal, 155, pp. 234–240. DOI: 10.1016/j.cej.2009.07.042
- 13. Konicki, W., Hełminiak, A., Arabczyk, W. & Mijowska, E. (2017). Removal of anionic dyes using magnetic Fe@graphite core-shell nanocomposite as an adsorbent from aqueous solutions. Journal of Colloid and Interface Science, 497, pp. 155–164. DOI:10.1016/j.jcis.2017.03.008
- 14. Kreiner, K. & Żyła, M. (2006). Binarny charakter powierzchni węgla kamiennego. Górnictwo i Geoinżynieria, 30, 2, pp. 19–34.
- 15. Kuśmierek, K., Gałan, M., Kamiński, W. & Świątkowski, A. (2020a). Use of sawdust as a low-cost sorbent for the removal of azo dyes from water. Przemysl Chemiczny, 99, 2, pp. 201–205. DOI:10.15199/62.2020.2.2
- 16. Kuśmierek, K., Świątkowski, A., Wierzbicka, E. & Legocka, I. (2020b). Enhanced adsorption of Direct Orange 26 dye in aqueous solutions by modified halloysite. Physicochemical Problems of Mineral Processing, 56, 4, pp. 693–701. DOI:10.37190/ppmp/124544
- 17. Kuśmierek, K., Zarębska, K. & Świątkowski, A. (2016). Hard coal as a potential low-cost adsorbent for removal of 4-chlorophenol from water. Water Science & Technology, 73, 8, pp. 2025–2030. DOI:10.2166/wst.2016.046
- 18. Lellis, B., Fávaro-Polonio, C.Z., Pamphile, J.A. & Polonio, J.C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3, pp. 275–290. DOI:10.1016/j.biori.2019.09.001
- 19. de Mattos, N.R., de Oliveira, C.R., Camargo, L.G.B., da Silva, R.S.R. & Lavall, R.L. (2019). Azo dye adsorption on anthracite: a view of thermodynamics, kinetics and cosmotropic effects. Separation and Purification Technology, 209, pp. 806-814. DOI:10.1016/j.seppur.2018.09.027
- 20. O'Keefe, J.M.K., Bechtel, A., Christanis, K., Dai, S., DiMichele, W.A., Eble, C.F., Esterle, J.S., Mastalerz, M., Raymond, A.L., Valentim, B.V., Wagner, N.J., Ward, C.R. & Hower, J.C. (2013). On the fundamental difference between coal rank and coal type. International Journal of Coal Geology, 118, pp. 58–87. DOI:10.1016/j.coal.2013.08.007
- 21. Rafique, M.A., Kiran, S., Ashraf, A., Mukhtar, N., Rizwan, S., Ashraf, M. & Arshad, M.Y. (2022). Effective removal of Direct Orange 26 dye using copper nanoparticles synthesized from Tilapia fish scales. Global NEST Journal, 24, 2, pp. 311–l 317. DOI:10.30955/gnj.004234
- 22. Rusu, L., Harja, M,. Simion, A.I., Suteu, D., Ciobanu, G. & Favier, L. (2014). Removal of Astrazone Blue from aqueous solutions onto brown peat. Equilibrium and kinetics studies. Korean Journal of Chemical Engineering, 31, 6, pp. 1008–1015. DOI:10.1007/s11814-014-0009-3
- 23. Safa, Y. & Bhatti, H.N. (2011). Kinetic and thermodynamic modeling for the removal of Direct Red-31 and Direct Orange-26 dyes from aqueous solutions by rice husk. Desalination, 272, pp. 313–322. DOI:10.1016/j.desal.2011.01.040
- 24. Safa, Y., Bhatti, H.N., Bhatti, I.A. & Asgher, M. (2011). Removal of Direct Red-31 and Direct Orange-26 by low cost rice husk: Influence of immobilisation and pretreatments. Canadian Journal of Chemical Engineering, 89, pp. 1554–1565. DOI:10.1002/cjce.20473
- 25. Sepulveda, L., Fernandez, K., Contreras, E. & Palma, C. (2004). Adsorption of dyes using peat: equilibrium and kinetic studies. Environmental Technology, 25, pp. 987–996. DOI:10.1080/09593332508618390
- 26. Sočo, E., Pająk, D. & Kalembkiewicz, J. (2020). Multi-component sorption and utilization of solid waste to simultaneous removing basic dye and heavy metal from aqueous system. Archives of Environmental Protection, 46, pp. 62-75. DOI:10.24425/aep.2020.132527
- 27. Tan, K.L. & Hameed, B.H. (2017). Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. Journal of the Taiwan Institute of Chemical Engineers, 74, pp. 25–48. DOI:10.1016/j.jtice.2017.01.024
- 28. Tarasevich, Y.I. (2001). Porous structure and adsorption properties of natural porous coal. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 176, pp. 267–272. DOI:10.1016/S0927-7757(00)00702-0
- 29. Tomczak, E. & Blus, M. (2016). Sorption dynamics of Direct Orange 26 dye onto a corncob plant sorbent. Ecological Chemistry and Engineering S, 23, 1, pp. 175–185. DOI:10.1515/eces-2016-0012
- 30. Tomczak, E. & Tosik, P. (2014). Sorption equilibrium of azo dyes Direct Orange 26 and Reactive Blue 81 onto a cheap plant sorbent. Ecological Chemistry and Engineering S, 21, 3, pp. 435–445. DOI:10.2478/eces-2014-0032
- 31. Venkata Mohan, S., Chandrasekhar Rao, N. & Karthikeyan, J. (2002). Adsorptive removal of direct azo dye from aqueous phase onto coal based sorbents: a kinetic and mechanistic study. Journal of Hazardous Materials, B90, pp. 189–204. DOI:10.1016/S0304-3894(01)00348-X
- 32. Wani, K.A., Jangid, N.K. & Bhat, A.R. (2020), Impact of textile dyes on public health and the environment, IGI Global, Hershey, USA.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3d1398d-c710-4f92-9467-0d59326c2510