PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Linking sea level dynamic and exceptional events to large-scale atmospheric circulation variability : a case of the Seine Bay, France

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the multi-time-scale variability of the South English Channel (case of the Seine Bay, North France) sea level and its exceptional events have been investigated in relation with the global climate patterns by the use of wavelet multi-resolution decomposition techniques. The analysis has been focused on surges demodulating by an envelope approach. The low-frequency components of the interannual (2.1-yr, 4-yr, 7.8-yr) and the interdecadal (15.6-yr and 21.2-yr) time- scales, extracted from 46-years demodulated surges, have been correlated to 36 exceptional stormy events according to their intensity. Results have revealed five categories of storms function on their correlation with the interannual and the interdecadal demodulated surges: events with high energy are manifested at the full scales while moderate events are only observed at the interannual scales. The succession of storms is mainly carried by the last positive oscillations of the interannual and the interdecadal scales. A statistical downscaling approach integrating the discrete wavelet multi- resolution analysis for each time-scale has been used to investigate the connection between the local dynamic of surges and the global atmospheric circulation from SLP composites. This relation illustrates dipolar patterns of high-low pressures suggesting positive anomalies at the interdecadal scales of 15.6-yr and 21.3-yr and the interannual scales of 4-yr while negative anomalies at 7.8-yr should be related to a series of physical mechanisms linked to the North-Atlantic and ocean/ atmospheric circulation oscillating at the same time-scales. The increasing storm frequency is probably related to the Gulf Stream variation and its weakening trend in the last years.
Czasopismo
Rocznik
Strony
321--330
Opis fizyczny
Bibliogr. 36 poz., mapa, tab., wykr.
Twórcy
autor
  • Continental and Coastal Morphodynamic Laboratory, Normandy University, Rouen, France
  • Continental and Coastal Morphodynamic Laboratory, Normandy University, Rouen, France
  • Continental and Coastal Morphodynamic Laboratory, Normandy University, Rouen, France
Bibliografia
  • [1] Devoy, R. J. N., 2008. Coastal vulnerability and the implications of sea level rise for Ireland. J. Coast. Res. 24 (2), 325-341, http://dx.doi.org/10.2112/07A-0007.1.
  • [2] Ezer, T., 2001. Can long-term variability in the Gulf Stream transport be inferred from sea level? Geophys. Res. Lett. 28 (6), 1031-1034, http://dx.doi.org/10.1029/2000GL011640.
  • [3] Ezer, T., Atkinson, L. P., Corlett, W. B., Blanco, J. L., 2013. Gulf Stream's induced sea level rise and variability along the U.S. mid-Atlantic coast. J. Geophys. Res. 118, 685-697, http://dx.doi.org/10.1002/jgrc.20091.
  • [4] Ezer, T., Corlett, W. B., 2012. Analysis of relative sea level variations and trends in the Chesapeake Bay: is there evidence for acceleration in sea level rise? In: Proc Oceans'12 MTS/IEEE, October 14-19, IEEE Xplore, http://dx.doi.org/10.1109/OCEANS.2012.6404794.
  • [5] Feliks, Y., Ghil, M., Robertson, A. W., 2011. The atmospheric circulation over the North Atlantic as induced by the SST field. J. Clim. 24 (2), 522-542, http://dx.doi.org/10.1175/2010JCLI3859.1.
  • [6] Frankignoul, C., Coëtlogon, G., Joyce, T. M., Dong, S., 2001. Gulf Stream variability and ocean-atmosphere interactions. J. Phys. Oceanogr. 31 (12), 3516-3529, http://dx.doi.org/10.1175/1520-0485(2002)031<3516:GSVAOA>2.0.CO;2.
  • [7] Gratiot, N., Anthony, E. J., Gardel, A., Gaucherel, C., Proisy, C., Wells, J. T., 2008. Significant contribution of the 18.6 year tidal cycle to regional coastal changes. Nat. Geosci. 1 (3), 169-172, http://dx.doi.org/10.1038/ngeo127.
  • [8] Hurrell, J. W., Kushnir, Y., Ottersen, G., Visbeck, M., 2003. An Over-view of the North Atlantic Oscillation. Geophys. Monog. Ser. 134, AGU, http://dx.doi.org/10.1029/134GM01.
  • [9] Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Joseph, D., 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77 (3), 437-472, http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
  • [10] Levermann, A., Griesel, A., Hofmann, M., Montoya, M., Rahmstorf, S., 2005. Dynamic sea level changes following changes in the thermohaline circulation. Clim. Dynam. 24 (4), 347-354, http://dx.doi.org/10.1007/s00382-004-0505-y.
  • [11] Lopez-parages, J., Villamayor, J., Gomaeai, I., Losada, T., Martinrey, M., Mohino, E., Polo, I., Rodriguez-Fonseca, B., Suarezi, R., 2013. Nonstationary interannual teleconnections modulated by multidecadal variability. Física de la Tierra 25, 11-39, http://dx.doi.org/10.5209/rev_FITE.2013.v25.43433.
  • [12] Marcos, M., Chust, G., Jordá, G., Caballero, A., 2012. Effect of sea level extremes on the western Basque coast during the 21st century. Clim. Res. 51 (3), 237-248, http://dx.doi.org/10.3354/cr01069.
  • [13] Martin-Rey, M., Polo, I., Rodriguez-Fonseca, B., Kucharski, F., 2012. Changes in the interannual variability of the tropical Pacific as a response to an equatorial Atlantic forcing. Sci. Mar. 76 (S1), 105-116, http://dx.doi.org/10.3989/scimar.03610.19A.
  • [14] Masina, M., Lamberti, A., 2013. A nonstationary analysis for the Northern Adriatic extreme sea levels. J. Geophys. Res. 118, 3999-4016, http://dx.doi.org/10.1002/jgrc.20313.
  • [15] Masina, M., Lamberti, A., Archetti, R., 2015. Coastal flooding: a copula based approach for estimating the joint probability of water levels and waves. Coast. Eng. 97, 37-52, http://dx.doi.org/10.1016/j.coastaleng.2014.12.010.
  • [16] Massei, N., Dieppois, B., Hannah, D. M., Lavers, D. A., Fossa, M., Laignel, B., Debret, M., 2017. Multi time-scale hydroclimate dynamics of a regional watershed and links to large-scale atmospheric circulation: Application to the Seine river catchment, France. J. Hydrol. 546, 262-275, http://dx.doi.org/10.1016/j.jhydrol.2017.01.008.
  • [17] Massei, N., Fournier, M., 2012. Assessing the expression of large-scale climatic fluctuations in the hydrological variability of daily Seine river flow (France) between 1950 and 2008 using Hilbert-Huang Transform. J. Hydrol. 448-449, 119-128, http://dx.doi.org/10.1016/j.jhydrol.2012.04.052.
  • [18] Menendez, M., Woodworth, P. L., 2010. Changes in extreme high water levels based on a quasi-global tide-gauge data set. J. Geophys. Res. 115, C10011, http://dx.doi.org/10.1029/2009JC005997.
  • [19] Minguez, R., Tomas, A., Mendez, F. J., Medina, R., 2012. Mixed extreme wave climate model for reanalysis databases. Stoch. Environ. Res. Risk. Assess. 27, 757-768, http://dx.doi.org/10.1007/s00477-012-0604-y.
  • [20] Mitchell, J. M., Dzerdzeevskii Jr., Flohn, B., Hofmeyr, H., Lamb, W. L., Rao, H. H., Wallén, C. C., 1966. Climatic change: Technical Note No. 79, report of a working group of the Commission for Climatology. WMO No. 195 TP 100. World Meteorological Organization, Geneva, Switzerland, 81 pp.
  • [21] Mitchell, M., Hershner, C., Herman, J., Schatt, D., Eggington, E., Stiles, S., 2013. Recurrent flooding study for Tidewater Virginia, Report SJR 76, 2012. Virginia Instit. Marine Sci., Gloucester Point, VA, 141 pp.
  • [22] Nicholls, R., Brown, S., Hanson, S., Hinkel, J., 2010. Economics of coastal zone adaptation to climate change, Discussion Paper 10. World Bank, Washington, DC.
  • [23] Polo, I., Rodriguez-Fonseca, B., Losada, T., Garcia-Serrano, J., 2008. Tropical Atlantic variability modes (1979-2002). Part I: Time evolving SST modes related to West African rainfall. J. Clim. 21, 6457-6475, http://dx.doi.org/10.1175/2008JCLI2607.1.
  • [24] Pugh, D. J., 1987. Tides, Surges and Mean Sea-Level: A Handbook for Engineers and Scientists. John Wiley, Chichester, 472 pp.
  • [25] Rodriguez-Fonseca, B., Polo, I., Garcia-Serrano, J., Losada, T., Mohino, E., Mechosos, C. R., Kucharski, F., 2009. Are Atlantic Niños enhancing Pacific ENSO events in recent decades? Geophys. Res. Lett. 36, L20705, http://dx.doi.org/10.1029/2009GL040048.
  • [26] Ruigar, H., Golian, S., 2015. Prediction of precipitation in Golestan dam watershed using climate signals. Theor. Appl. Climatol. 123 (3-4), 671-682, http://dx.doi.org/10.1007/s00704-015-1377-2.
  • [27] Sallenger, A. H., Doran, K. S., Howd, P., 2012. Hotspot of accelerated sea-level rise on the Atlantic coast of North America. Nat. Clim. Change 2, 884-888, http://dx.doi.org/10.1038/NCILMATE1597.
  • [28] Shaw, A. G. P., Tsimplis, M. N., 2010. The 18.6 yr nodal modulation in the tides of Southern European Coasts. Cont. Shelf Res. 30 (2), 138-151, http://dx.doi.org/10.1016/j.csr.2009.10.006.
  • [29] Stive, M. J. F., Aarninkhof, S. G. J., Hamm, L., Hanson, H., Larson, M., Wijnberg, K. M., Nicholls, R. J., Capobianco, M., 2002. Variability of shore and shoreline evolution. Coast. Eng. 47 (2), 211-235, http://dx.doi.org/10.1016/S0378-3839(02)00126-6.
  • [30] Sweet, W., Zervas, C., Gill, S., 2009. Elevated east coast sea level anomaly: June-July 2009, NOAA Tech. Rep. No. NOS CO-OPS 051. NOAA NOS, Silver Spring, MD, 40 pp.
  • [31] Tsimplis, M. N., Woodworth, P. L., 1994. The global distribution of the seasonal sea level cycle calculated from coastal tide gauge data. J. Geophys. Res. 99 (C8), 16031-16039.
  • [32] Turki, I., Laignel, B., Chevalier, L., Costa, S., Massei, N., 2015. Coastal sea level changes in the southeastern side of the English channel: potentialities for future SWOT applicability. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8 (4), 1564-1569, http://dx.doi.org/10.1109/JSTARS.2015.2419693.
  • [33] Wood, F., 2001. Tidal dynamics. Volume 1: theory and analysis of tidal forces. J. Coast. Res. 259-326, https://www.jstor.org/stable/25736216.
  • [34] Woodworth, P. L., Blackman, D. L., 2004. Evidence for systematic changes in extreme high waters since the mid-1970s. J. Clim. 17 (6), 1190-1197, http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.
  • [35] Yang, Y., 2017. A signal theoretic approach for envelope analysis of real-valued signals. IEEE Access 5, 5623-5630, http://dx.doi.org/10.1109/ACCESS.2017.2688467.
  • [36] Yin, J., Schlesinger, M. E., Stouffer, R. J., 2009. Model projections of rapid sea-level rise on the northeast coast of the United States. Nat. Geosci. 2, 262-266, http://dx.doi.org/10.1038/NGEO462.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3cfec6b-3cec-4e39-aa95-514607a51a0a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.