Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Projekt jednoelementowej anteny z przełączaną wiązką na konstrukcjach EBG typu Mushroom
Języki publikacji
Abstrakty
This paper proposes the low profile switched beam antenna that uses only a single element for 5G applications. The antenna is placed on mushroom-like EBG structures to suppress surface waves. Therefore, bandwidth and directive gain of the proposed antenna can be enhanced. To increase signal in the desired direction and reduce interference in undesired directions, switched beam technique is proposed. There are two directions of main beam antenna 0˚/180˚ and 90˚/270˚ by shorted circuit at terminal edges. The results in terms of bandwidth and gain are compared when the antenna is with and without EBG. The results confirm that the bandwidth and gain can be enhanced when the proposed switched beam antenna is placed on mushroom-like EBG.
W artykule zaproponowano niskoprofilową antenę z przełączaną wiązką, która wykorzystuje tylko jeden element do zastosowań 5G. Antena jest umieszczona na przypominających grzyby konstrukcjach EBG, aby wytłumić fale powierzchniowe. W związku z tym można zwiększyć przepustowość i wzmocnienie kierunkowe proponowanej anteny. W celu zwiększenia sygnału w pożądanym kierunku i zmniejszenia zakłóceń w niepożądanych kierunkach proponuje się technikę wiązki przełączanej. Istnieją dwa kierunki anteny głównej 0˚/180˚ i 90˚/270˚ poprzez zwarcie na krawędziach zacisków. Wyniki pod względem szerokości pasma i wzmocnienia są porównywane, gdy antena jest zi bez EBG. Wyniki potwierdzają, że przepustowość i wzmocnienie można zwiększyć, gdy proponowana antena z przełączaną wiązką zostanie umieszczona na EBG w kształcie grzybka.
Wydawca
Czasopismo
Rocznik
Tom
Strony
35--39
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
- Srinakharinwirot University
autor
- Rajamangala University of Technology Isan
autor
- Suranaree University of Technology, Thailand
Bibliografia
- [1] Gross Frank B., Smart Antenna for Wireless Communications with MATLAB, 1st ed., McGraw-Hill, (2005), ch 8
- [2] El Zooghby A., Smart Antenna Engineering, Artech House Publishers, (2005)
- [3] Chaipanya P., Mana A., Jiamdenngam T., Montree W., Millimeter-Wave switched beam antenna with parasitic ring for 5G applications, Przegląd Elektrotechniczny, 96 (2020), nr 11, 90-95
- [4] Kausar A., Mehrpouyan H., Sellathurai M., Qian R., Kausar S., Energy Efficient Switched Parasitic Array Antenna for 5G Networks and IoT, 2016 Loughborough Antennas & Propagation Conference (LAPC), (2016), 1-5 [5
- [5] Nakano H., Eto J., Okabe Y., Yamauchi J., Tilted- and Axial- Beam Formation by a Single-Arm Rectangular Spiral Antenna with Compact Dielectric Substrate and Conducting Plane, IEEE Transactions on Antennas and Propagation, 50 (2002), No. 1, 17-24
- [6] Gong L., Chan K. Y., Ramer R., A Beam Steering Single-Arm Rectangular Spiral Antenna with Large Azimuth Space Coverage, WAMICON 2013, (2013), 1-4
- [7] Mehta A., Mirshekar-Syahkal D., Pattern Steerable Square Loop Antenna, IEEE Electronic Letters (IET), 43 (2007), No. 9, 491-493
- [8] Ngamjanyaporn P., Phongcharoenpanich C., Akkaraekthalin P., Krairiksh M., Signal-to-Interference Ratio Improvement by Using a Phased Array Antenna of Switched-Beam Elements, IEEE Transactions on Antennas and Propagation, 53 (2005), No. 5, 1819-1828
- [9] Uthansakul M., Chaipanya P., Uthansakul P., Performance Evaluation of a Low-Cost Switched-Beam Antenna for WLAN Users, Microwave and optical technology letters, 52 (2010), Nr 9, 2069-2074
- [10] Chaipanya P., Uthansakul P., Wongsan R., Uthansakul M., Enhancement of WLAN Signal Strength using Switched-Beam Single Antenna, APMC 2009, (2009), 770-773
- [11] Chaipanya P., Rattanakriengkai P., Potup. P., Lapourailers L., A Dual-Band Single-Feed Switched Beam Antenna for WLAN, International Journal of Electronics and Telecommunications, 63 (2017), 405-410
- [12] Chaipanya P., Low Profile Switched Beam Utilizing a Ring-Parasitic Antenna, 2015 International Symposium on Antennas and Propagation (ISAP), (2015), 1-4
- [13] Chaipanya P., Single Element Switched Beam Antenna Utilizing Parasitic Elements for Back Lobe Reduction, the 2017 International Conference on Telecommunications and Communication Engineering, (2017), 15–19
- [14] Roy M., Mittal A., Surface Wave Suppression in LHCP Microstrip Patch Antenna Embedded on Textured Pin Substrate, Progress In Electromagnetics Research C, 89 (2019), 171–180
- [15] Kumar A., Mohan J., Gupta H., Surface Wave Suppression of Microstrip Antenna Using Different EBG Designs, 2015 International Conference on Signal Processing and Communication (ICSC), (2015), 355-359
- [16] Neo C., Lee Y. H., Patch Antenna Enhancement Using a Mushroom-Like EBG Structures, 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), (2013) 614-615
- [17] Mouris B. A., Fernández-Prieto A., Thobaben R., Martel J., Mesa F., Quevedo-Teruel O., On the Increment of the Bandwidth of Mushroom-Type EBG Structures with Glide Symmetry, IEEE Transactions on Microwave Theory and Techniques, 68 (2020), 1365-1375
- [18] Gupta R., Kumar M., Bandwidth Enhancement of Microstrip Patch Antennas by Implementing Electromagnetic Bandgap (EBG) Structures, 2012 Fourth International Conference on Computational Intelligence and Communication Networks, (2012), 15-18
- [19] Expósito-Domínguez G., Fernández-González J. M., Padilla and M. Sierra-Castañer P., EBG Size Reduction for Low Permittivity Substrates, International Journal of Antennas and Propagation, 2012 (2012), 1-8
- [20] Benykhlef F., Boukli-Hacene N., EBG Structures for Reduction of Mutual Coupling in Patch Antennas Arrays, Jouranl of Communications Software and Systems, 13 (2017), 9-14
- [21] Al-Gburi A. J. A., Ibrahim I., Zakaria Z., Khaleel A. D., Bandwidth and Gain Enhancement of Ultra-Wideband Monopole Antenna Using MEBG Structure, ARPN J. Eng. Appl. Sci., 14, 10, (2019), 3390–3393
- [22] Al-gburi A. J. A., Ibrahim I. M., Zakaria Z., Gain Enhancement for Whole Ultra-Wideband Frequencies of a Microstrip Patch Antenna, J. Comput. Teoretyk. Nanosci., 17, (2020), 1469–1473
- [23] Keriee H. H., Rahim M. K. A., Nayyef N. A., Zakaria Z., Al- Gburi A. J. A., High Gain Antenna at 915 MHz for Off Grid Wireless Networks, Bull. Elektryk. Eng. Informatics, 9, 6, (2020), 2449–2454
- [24] Al-Gburi A. J. A., Ibrahim I. M., Zakaria Z., Band-notch Effect of U-shaped split ring resonator structure at ultra wide-band monopole antenna, Int. J. Appl. Eng. Res., 12, 15, (2017), 4782–4789
- [25] Ibrahim I. M., Al-gburi A. J. A., Zakaria Z., Bakar H. A., Parametric Study of Modified U-shaped Split Ring Resonator Structure Dimension at Ultra-Wide-band Monopole Antenna, J. Telecommun. Elektron. Comput. Eng., 10, 2, (2018), 53–57
- [26] Al-gburi A. J. A., Ibrahim I. M., Zeain M. Y., Zakaria Z., Compact Size and High Gain of CPW-fed UWB Strawberry Artistic shaped Printed Monopol Antennas using FSS Single Layer Reflector, IEEE Access, 8, 5, (2020), 92697–92707
- [27] Al-gburi A. J. A. et al., A Compact UWB FSS Single Layer with Stopband Properties for Shielding Applications, " Przegląd Elektrotechniczny, 2, (2021),167–170
- [28] Al-gburi A. J. A., Ibrahim I. M., Ahmad K. S., Zakaria Z., Zeain M. Y., Abdulhameed M. K., Saeidi T., A Miniaturised UWB FSS with Stop-band Characteristics for EM Shielding Applications", Prz. Elektrotechniczny, 8, (2021), 142–145
- [29] Zhang X., Teng Z., Liu Z., Li B., A Dual Band Patch Antenna with a Pinwheel-Shaped Slots EBG Substrate, International Journal of Antennas and Propagation, 2015 (2015), 1-8
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3cef7cc-8ac4-4a5a-9c62-84bf9b13ce3e