PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pyrite depression by dextrin in flotation with xanthates. Adsorption and floatability studies

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Depression of pyrite by dextrin in flotation with xanthates has been studied. The adsorption of dextrin and xanthates at the pyrite/aqueous solution interface has been investigated through electrokinetics, Raman spectroscopy and batch adsorption studies using oxidized pyrite. Microflotation studies were undertaken to evaluate the pyrite depression with dextrin using ethyl and propyl xanthates as the collector. The surface density of ferric hydroxide on pyrite depended on pH and was highest about the iep (pH 7.5) of the oxidized pyrite. Dextrin adsorption was directly related to the surface density of ferric hydroxide and took place through two steps suggesting two adsorption mechanisms on ferric hydroxide. Xanthate adsorption as dixanthogen occurred along with ferric hydroxide dissolution causing partial dextrin desorption from the pyrite surface; consequently, co-adsorption of xanthate and dextrin occurred on the surface. Depression of pyrite flotation with xanthate was determined by the oxidation level of the pyrite surface. Floatability of pyrite with xanthate was highly impaired by dextrin at pH 8 only when the surface density of ferric hydroxide on the pyrite surface was very high.
Słowa kluczowe
Rocznik
Strony
1159--1171
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí
  • Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí
  • Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí
  • Instituto de Metalurgia, Universidad Autónoma de San Luis Potosí
autor
  • Departamento de Ingeniería Metalúrgica y Minas, Universidad Católica del Norte
autor
  • Departamento de Ingeniería Química y Procesos Minerales, Universidad de Antofogasta
Bibliografia
  • BALL, B., RICKARD, R. S., 1976. The Chemistry of Pyrite Flotation and Depression. In: Fuerstenau M.C., Flotation A. M. Gaudin Memorial Volume 1, SME-AIME, 458–484.
  • BOGUSZ, E., BRIENNE, S. R., BUTLER, I., RAO, S. R., FINCH, J. A., 1997. Metal ions and dextrin adsorption on pyrite. Minerals Engineering 10, 441–445.
  • BUCLEY, A., WOODS, R., 1984. An X-ray photoelectron spectroscopic investigation of the surface oxidation of sulfide minerals. Proceedings of the International Symposium on Electrochemistry and Mineral Processing, The Electrochemical Society, 286–302.
  • BULUT, G., ARSLAN, F., ATAK, S., 2004. Flotation behaviors of pyrites with different chemical compositions. Minerals and Metallurgical Processing, 21, 86–92.
  • BULATOVIC, S. M., WYSLOUZIL, D. M., 1995. Selection and evaluation of different depressants systems for flotation of complex sulphide ores. Minerals Engineering 8, 63–76.
  • BULATOVIC, S. M., 2007. Hand Book of Flotation Reagents. Chemistry, Theory and Practice: Flotation of Sulfide Ores Vol 1. Elsevier, Amsterdam, 185-193.
  • CASTRO, S. 2012. Challenges in flotation of Cu-Mo sulfide in sea water. In: Water in Mineral Processing. Proceedings of the 1st International Symposium, J. Drelich (Ed.) SME, Englewood, Colorado, USA, 29-40.
  • CHANDER, S., 1988. Inorganic depressants for sulfide minerals. In: Reagents in Mineral Technology, Surfactant Science Series Vol 27. Somasundaran P., Moudgil B. M. (Eds.), Marcel Dekker, New York, 429–469.
  • CLARKE, P., FORNASIERO, D., RALSTON, J., SMART, R. St. C., 1995. A study of the removal of oxidation products from sulfide mineral surfaces. Minerals Engineering, 8, 1347–1357.
  • DAS, D., MUKHERJEE, S., PAL, A., DAS, R., SAHU, S.G. PAL, S., 2016, Synthesis and characterization of biodegradable copolymer derived from dextrin and poly(vinyl acetate) via atom transfer radical polymerization, RSC Advances, 6, 93529359.
  • DAS, S. HENDRY, M., 2011, Application of Raman spectroscopy to identify iron minerals commonly found in mine wastes. Chemical Geology, 290, 101-108.
  • DUBOIS, M., GILLES, K. A., HAMILTON, J. K., REBERS, P. A., SMITH, F., 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28, 350–356.
  • FORNASIERO, D., RALSTON, J., 1992. Iron hydroxide complexes and their influence on the interaction between ethyl xanthate and pyrite. Journal of Colloid and Interface Science, 151, 225–235.
  • FUERSTENAU, M. C., KUHN, M. C., ELGILLANI, D. A., 1968. The role of dixanthogen in xanthate flotation of pyrite. AIME Transactions, 241, 148–156.
  • FUERSTENAU, M. C., NATALIE, C. A., ROWE, R. M., 1990. Xanthate adsorption on selected sulfides in the virtual absence and presence of oxygen. Int. J. Miner. Process., 29, 89–119.
  • FUERSTENAU, D. W., METZGER, P. H., SEELE, G. D., 1957. Modified Hallimond tube for flotation testing. Engineering and Mining Journal, 158, 93–95.
  • FUERSTENAU, D. W., MISHIRA, R. K., 1980. On the mechanism of pyrite flotation with xanthate collectors. In: Complex Sulfide Ores. Jones J. J.(Ed.) The Institution of Mining and Metallurgy, London, 271–278.
  • GARD, R., HOLMGREN, A., FORSLING, W., 1997. Spectroscopic studies of dextrin adsorption onto colloidal ZnS. Journal of Colloid and Interface Science 194, 319–325.
  • HOCHELLA, M. F., 2003. Nanoscience and technology: The next revolution in the earth sciences, earth and planetary science letters, Vol. 203, 593–605.
  • KYDROS, K. A., GALLIOS, G. P., MATIS, K. A., 1994. Modification of pyrite and sphalerite flotation by dextrin. In: Separation Science and Technology, Marcel Dekker, Inc., Vol. 29, 2263–2275.
  • LASKOWSKI, J. S., SUBRAMANIAN, S., NYAMEKYE, G. A., 1993. Polysaccharides – emerging non-toxic modifiers for differential flotation of sulphides. XVIII International Mineral Processing Congress, Sydney, Australia, 593–600.
  • LEJA, J., 1982. Flotation surfactants. In: Surface chemistry of froth flotation, Plenum Press, New York, 228–258.
  • LIN, K. P., BURDICK, Ch. L., 1988. Polymeric Depressant. In: Reagents in Mineral Technology, Surfactant Science Series Vol 27. Somasundaran, P., Moudgil, B. M. (Eds.). Marcel Dekeer Inc., New York, 471-484.
  • LIU, Q., LASKOWSKI, J. S., 1989. The role of metal hydroxides at mineral surfaces in dextrin adsorption. I. Studies on modified quartz samples, Int. J. Miner. Process. 26, 297–316.
  • LIU, Q., LASKOWSKI, J. S., 2002. Adsorption of polysaccharides on mineral surfaces from aqueous solutions. In: Encyclopedia of Surface and Colloid Science, A. T. Hubbard (Ed.), Marcel Dekker, New York, 573–590.
  • LOPEZ-VALDIVIESO, A., SANCHEZ-LOPEZ, A. A., SONG, S., GARCIA MARTINEZ, H. A., LICON-ALMADA, S., 2007. Dextrin as a regulator for the selective flotation of chalcopyrite, galena and pyrite. Canadian Metallurgical Quaterly, 46(3) 301-307.
  • LOPEZ-VALDIVIESO, A., SANCHEZ-LOPEZ, A. A., SONG, S., ROBLEDO-CABRERA, A., CELEDONCERVANTES, T., 2003. Flotation chemistry of pyrite with xanthates as collector and dextrin as a depressant. Copper 2003-Cobre 2003, Vol. III-Mineral Processing, C. O. Gomez and C. A. Barahona (Eds.), Santiago, Chile, 283–297.
  • LOPEZ-VALDIVIESO, A., CELEDON-CERVANTES, T., SONG, S., ROBLEDO-CABRERA, A., LASKOWSKI, J. S., 2004. Dextrin as a non-toxic depressant for pyrite in flotation with xanthates as collector. Minerals Engineering, 17, 1001–1006.
  • LOPEZ-VALDIVIESO, A., SANCHEZ LOPEZ, A. A., SONG, S., 2005. On the cathodic reaction coupled with the oxidation of xanthates at the pyrite/aqueous solution interface. Int. J. Miner. Process., 77, 154–164.
  • LYKLEMA, J. 1995. Fundamentals of interface and Colloid Science, Vol II: Solid-Liquid Interfaces. Academic Press, San Diego, California, Chapter 5.
  • MILLER, J. D., LIN, C. L., CHANG, S. S., 1984. Coadsorption phenomena in the separation of pyrite from coal by reverse flotation. Coal Preparation, 1, 21–38.
  • MILLER, J. D., DU PLESSIS, R., KOTYLAR, D. G., ZHU, X., SIMMONS, G. L., 2002. The low-potential hydrophobic state of pyrite in amyl xanthate flotation with nitrogen. Int. J. Miner. Process., 67, 1–15.
  • NYAMEKYE, G. A., LASKOWSKI, J. S., 1993. Adsorption and electrokinetic studies on the dextrin-sulfide mineral interactions. Journal of Colloid and Interface Science, 157, 160–167.
  • PARKER, G. K. HOPE G. A., 2010. A Raman Spectroscopic Investigation of Pyrite Oxidation and Flotation Reagent Interaction, Electrochemical Society Trans. 28, 39-50.
  • RATH, R. K., SUBRAMANIAN, S., 1999. Adsorption, electrokinetic and differential flotation studies on sphalerite and galena using dextrin. Int. J. Miner. Process., 57, 265–283.
  • RATH, R. K., SUBRAMANIAN, S., PRADEEP, T., 2000. Surface chemical studies on pyrite in the presence of polysaccharide-based flotation depressants. Journal of Colloid and Interface Science, 229, 82–91.
  • RUMBALL, J. A., RICHMOND, G. D., 1996. Measurement of oxidation in a base metal flotation circuit by selective leaching with EDTA. Int. J. Miner. Process., 48, 1–20.
  • SITTER, A. J., SHIFFLETT, J. R. TRENER, J., 1988, Resonance Raman Spectroscopic Evidence for Heme Iron-Hydroxide Ligation in Peroxidase Alkaline Forms, The Journal of Biological Chemistry, 263 (26), 13032-13038.
  • STONE, K. L., BEHAN, R. K. GREEN, M. T., 2006, Resonance Raman spectroscopy of chloroperoxidase compound II provides direct evidence for the existence of an iron(IV)–hydroxide, Proceedings of the National Academy of Sciences, 103 (33), 12307-12310.
  • TODD, E. C., SHERMAN, D. M., PURTON, J. A., 2003. Surface oxidation of pyrite under ambient atmospheric and aqueous (pH=2 to 10) conditions: Electronic structure and mineralogy from X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 67, 881–893.
  • WANG, X., FORSSBERG, E., 1990. EDTA-induced flotation of sulfide minerals. Journal of Colloid and Interface Science, 140, 217–226.
  • WIE, J. M., FUERSTENAU D. W., 1974. The effect of dextrin on surface properties and the flotation of molybdenite. Int. J. Miner. Process., 1, 17–32.
  • WIESSENBORN, P. K., 1993. Selective flocculation of ultrafine iron ore, Ph. D. Thesis, Curtin University of Technology.
  • WOODS, R. 1988. Flotation of sulfide minerals. In: Reagents in Mineral Technology, Surfactant Science Series Vol 27. Somasundaran, P., Moudgil, B. M. (Eds.). Marcel Dekeer Inc., New York. 39-78.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3cdc0b2-f026-440f-a2e4-0682e673c86d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.