PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Processing characteristics correction of measuring systems by means a differintegral of variable order

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents new methods for correcting the processing characteristics of measurement systems based on a modified Grünwald-Letnikov fractional calculus definition. The presented methods are based on the determination of the fractional order as an estimation factor. Two methods are presented: a fractional order array and a fractional order function. Both methods can be used in DSP systems as methods to correct the processing characteristics of systems with measuring transducers and measurement systems in general.
Twórcy
  • Casimir Pulaski Radom University, Faculty of Transport, Electrical Engineering and Computer Science, Malczewskiego 29, 26-600 Radom, Poland,
Bibliografia
  • [1] Oldham, K.B. Spanier, J. (2008) The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order. Dover Publications
  • [2] Das, S. (2008) Functional Fractional Calculus for System Identification and Controls. Springer-Verlag
  • [3] Jiao, Z., Chen, YQ., Podlubny I. (2012) Distributed-Order Dynamic Systems. Stability, Simulation, Applications and Perspectives; Springer London
  • [4] Podlubny I. (1999) Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications. Academic Press
  • [5] Petráš, I. Terpák, J. (2023) Fractional calculus as a cimple tool for modeling and analysis of long memory process in industry, doi: 10.3390/math7060511
  • [6] Hunek, W.P., Feliks T. (2021) “Robust fractional-order perfect control for non-full rank plants described in the Grünwald-Letnikov IMC framework”, FCAA 2021, 24(4):1257-1274. doi: 10.1515/fca-2021-0054
  • [7] Mahata, S., Herencsar, N. and Maione G. (2023) “Optimal approximation of analog PID controllers of complex fractional-order”, FCAA 2023, 10.1007/s13540-023-00168-x
  • [8] Oprzędkiewicz K. (2021) “Fractional order, discrete model of heat transfer process using time and spatial Grünwald-Letnikov operator”, Bulletin of the Polish Academy of Sciences Technical Sciences 69(4)
  • [9] Sowa M. and Majka L. and Wajda K. (2023) “Excitation system voltage regulator modeling with the use of fractional calculus”, AEU - International Journal of Electronics and Communications 159, doi: 10.1016/j.aeue.2022.154471
  • [10] Matusiak M. , Bąkała, M., Wojciechowski, R. and Ostalczyk, P. (2020) „Fractional discrete model of an electrical drive with brushless micro-motor”, Bulletin of the Polish Academy of Sciences Technical Sciences 68(3)
  • [11] Brouji H. El, Vinassa J.-M., et al. (2008) “Ultracapacitors self-discharge modelling using a physical description of porous electrode impedance”, IEEE Vehicle Power and Propulsion Conference 2008
  • [12] Lopes, A.; Tenreiro Machado, J. (2021) “Fractional-Order Sensing and Control: Embedding the Nonlinear Dynamics of Robot Manipulators into the Multidimensional Scaling Method” Sensors 2021, 21(22), 7736, doi: 10.3390/s21227736
  • [13] Ullah, N. (2020) “Fractional order sliding mode control design for a buck converter feeding resistive power loads”, Mathematical Modelling of Engineering Problems 2020, Vol. 7, No. 4, pp. 649-658
  • [14] Su, L.; Zhou, G.; Hu, D.; Liu, Y.; Zhu, Y. (2021) “Research on the State of Charge of Lithium-Ion Battery Based on the Fractional Order Model”, Energies 2021, 14, 6307, doi: 10.3390/en14196307
  • [15] Magin, R.L., Hall, M. G., Karaman, M. M. and Vegh, V. (2016) “Fractional Calculus Models of Magnetic Resonance Phenomena: Relaxation and Diffusion”, Critical reviews in biomedical engineering 48(5), 10.1615/CritRevBiomedEng.2020033925
  • [16] Yang Q., Chen D., Zhao T., Chen YQ. (2016) “Fractional calculus in image processing: a review”, Fractional Calculus and Applied Analysis 2016, vol. 19, No. 5, pp. 1222-1249, doi: 10.1515/fca-2016-0063
  • [17] Kaczorek T. (2021) “Positive electrical circuits with the chain structure and cyclic Metzler state matrices”, Bulletin of the Polish Academy of Sciences Technical Sciences 69(4)
  • [18] Dzieliński, A., Sierociuk, D. and Sarwas, G. (2010) „Some applications of fractional order calculus”, Bulletin of the Polish Academy of Sciences Technical Sciences 58(4)
  • [19] Tarasov, V. E. (2020) “Mathematical Economics: Application of Fractional Calculus”, Mathematics 2020 8(5), doi: 10.3390/math8050660
  • [20] Tarasov V. E. (2017) “Interpretation of Fractional Derivatives as Reconstruction from Sequence of Integer Derivatives”, Fundamenta Informaticae 2017 Vol. 151, No 1-4, pp. 431–442
  • [21] Ortigueira, M.D., Machado J.T.M. (2018) “On fractional vectorial calculus”, Bulletin of the Polish Academy of Sciences: Technical Sciences 2018, No 4
  • [22] Cioć R. (2016) “Physical and geometrical interpretation of Grünwald-Letnikov differintegrals: measurement of path and acceleration”, Fractional Calculus and Applied Analysis 2016, Vol. 19, No 1(2016), pp. 161-172, doi: 10.1515/fca-2016-0001
  • [23] Cioć R., Chrzan M. (2019) “Fractional order model of measured quantity errors” Bull. Pol. Ac.: Tech. 2019, Vol. 67, No. 6, doi: 10.24425/bpasts.2019. 130887
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3cce5ae-6760-4887-b553-f957af43934b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.