PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Magnetotransport measurements as a tool for searching 3D topological insulators

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper covers some measurement aspects of transport of electrons through metals and semiconductors in magnetic field - magnetotransport - allowing for the determination of electrical parameters characteristic of three-dimensional (3D) topological insulators (TI) (i.e. those that behave like an insulator inside their volume and have a conductive layer on their surface). A characteristic feature of the 3D TI is also a lack of differences between the chemical composition of the conductive surface and the interior of the material tested and the fact that the electron states for its surface conductivity are topologically protected. In particular, the methods of generating strong magnetic fields, obtaining low temperatures, creating electrical contacts with appropriate geometry were presented, and the measurement methods were reviewed. In addition, the results of magnetotransport measurements obtained for two volumetric samples based on the HgCdTe compound grown with the molecular beam epitaxy method are presented.
Rocznik
Strony
725--734
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr., wzory
Twórcy
  • University of Rzeszow, College of Natural Sciences, Institute of Physics, 1 Pigonia St., Rzeszow 35-959, Poland
  • Łukasiewicz Research Network - Institute of Microelectronics and Photonics, al. Lotników 32/46, 02-668 Warsaw, Poland
autor
  • University of Rzeszow, College of Natural Sciences, Institute of Physics, 1 Pigonia St., Rzeszow 35-959, Poland
  • University of Rzeszow, College of Natural Sciences, Institute of Physics, 1 Pigonia St., Rzeszow 35-959, Poland
  • University of Rzeszow, College of Natural Sciences, Institute of Physics, 1 Pigonia St., Rzeszow 35-959, Poland
  • University of Rzeszow, College of Natural Sciences, Institute of Physics, 1 Pigonia St., Rzeszow 35-959, Poland
autor
  • University of Rzeszow, College of Natural Sciences, Institute of Physics, 1 Pigonia St., Rzeszow 35-959, Poland
  • University of Rzeszow, College of Natural Sciences, Institute of Physics, 1 Pigonia St., Rzeszow 35-959, Poland
autor
  • Łukasiewicz Research Network - Institute of Microelectronics and Photonics, al. Lotników 32/46, 02-668 Warsaw, Poland
Bibliografia
  • [1] Fu, L., Kane, C. L., & Mele, E. J. (2007). Topological Insulators in Three Dimensions. Physical Review Letters, 98(10), 106803. https://doi.org/10.1103/physrevlett.98.106803
  • [2] Hsieh, D., Qian, D., Wray, L., Xia, Y., Hor, Y. S., Cava, R. J., & Hasan, M. Z. (2008). A topological Dirac insulator in a quantum spin Hall phase. Nature, 452(7190), 970-974. https://doi.org/10.1038/nature06843
  • [3] Xu, Y., Miotkowski, I., Liu, C., Tian, J., Nam, H., Alidoust, N., Hu, J., Shih, C.-K., Hasan, M. Z., & Chen, Y. P. (2014). Observation of topological surface state quantum Hall effect in an intrinsic three-dimensional topological insulator. Nature Physics, 10(12), 956-963. https://doi.org/10.1038/nphys3140
  • [4] Qu, D.-X., Hor, Y. S., Xiong, J., Cava, R. J., & Ong, N. P. (2010). Quantum Oscillations and Hall Anomaly of Surface States in the Topological Insulator Bi2Te3. Science, 329(5993), 821-824. https://doi.org/10.1126/science.1189792
  • [5] Analytis, J. G., McDonald, R. D., Riggs, S. C., Chu, J.-H., Boebinger, G. S., & Fisher, I. R. (2010). Two-dimensional surface state in the quantum limit of a topological insulator. Nature Physics, 6(12), 960-964. https://doi.org/10.1038/nphys1861
  • [6] Shrestha, K. (2015). Magnetotransport Studies on Topological Insulators [Doctoral dissertation, University of Houston]. https://uh-ir.tdl.org/handle/10657/4881
  • [7] Zhang, J. (2016). Transport Studies of the Electrical, Magnetic and Thermoelectric Properties of Topological Insulator Thin Films. Springer-Verlag GmbH
  • [8] König, M., Wiedmann, S., Brüne, C., Roth, A., Buhmann, H., Molenkamp, L. W., Qi, X.-L., & Zhang, S.-C. (2007). Quantum Spin Hall Insulator State in HgTe Quantum Wells. Science, 318(5851), 766-770. https://doi.org/10.1126/science.1148047
  • [9] Shamim, S., Beugeling, W., Böttcher, J., Shekhar, P., Budewitz, A., Leubner, P., Lunczer, L., Hankiewicz, E. M., Buhmann, H., & Molenkamp, L. W. (2020). Emergent quantum Hall effects below 50 mT in a two-dimensional topological insulator. Science Advances, 6(26). https://doi.org/10.1126/sciadv.aba4625
  • [10] Weis, J., & von Klitzing, K. (2011). Metrology and microscopic picture of the integer quantum Hall effect. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1953), 3954-3974. https://doi.org/10.1098/rsta.2011.0198
  • [11] K. I. Wysokiński. (2006). Quantum Hall effect: the fundamentals. Metrology and Measurement Systems, 13(2), 113-124. http://www.metrology.pg.gda.pl/full/2006/M&MS_2006_113.pdf
  • [12] Brüne, C., Liu, C. X., Novik, E. G., Hankiewicz, E. M., Buhmann, H., Chen, Y. L., Qi, X. L., Shen, Z. X., Zhang, S. C., & Molenkamp, L. W. (2011). Quantum Hall effect from the topological surface states of strained bulk HgTe. Physical Review Letters, 106(12), 126803. https://doi.org/10.1103/PhysRevLett.106.126803
  • [13] Brüne, C., Thienel, C., Stuiber, M., Böttcher, J., Buhmann, H., Novik, E. G., Liu, C.-X., Hankiewicz, E. M., & Molenkamp, L. W. (2014). Dirac-Screening Stabilized Surface-State Transport in a Topological Insulator. Physical Review X, 4(4), 41045. https://doi.org/10.1103/PhysRevX.4.041045
  • [14] Mikitik, G. P., & Sharlai, Y. V. (1999). Manifestation of Berry’s Phase in Metal Physics. Physical Review Letters, 82(10), 2147-2150. https://doi.org/10.1103/physrevlett.82.2147
  • [15] Taskin, A. A., & Ando, Y. (2011). Berry phase of nonideal Dirac fermions in topological insulators. Physical Review B, 84(3), 35301. https://doi.org/10.1103/physrevb.84.035301
  • [16] Tomaka, G., Grendysa, J., Śliż, P., Becker, C. R., Polit, J., Wojnarowska, R., Stadler, A., & Sheregii, E. M. (2016). High-temperature stability of electron transport in semiconductors with strong spin-orbital interaction. Physical Review B, 93(20), 205419. https://doi.org/10.1103/physrevb.93.205419
  • [17] Melhem, Z. (2019). Cryogenics at Oxford Instruments. Oxford Instruments. https://indico.cern.ch/event/792215/contributions/3408669/attachments/1938018/3212326/Melhem_Ziad_Cryo_at_OI_EasiTrain_2Oct19_.pdf
  • [18] Balshaw, N. H. (1996). Practical Cryogenics: An Introduction to Laboratory Cryogenics. Oxford Instruments, Scientific Research Division
  • [19] LakeShore. (n.d.). Lake Shore 7500/9500 Series Hall System User’s Manual. http://sites.science.oregonstate.edu/∼tatej/TateLabWiki/lib/exe/fetch.php?media=manuals:lakeshore_7504_complete.pdf
  • [20] MagLab. (2018). National MagLab - Elevate your research with higher fields. Brochure. https://nationalmaglab.org/images/research/publications/searchable_docs/print_media/maglab_elevate_brochure_2018.pdf
  • [21] Markiewicz, W. D., Larbalestier, D. C., Weijers, H. W., Voran, A. J., Pickard, K. W., Sheppard, W. R., Jaroszynski, J., Xu, A., Walsh, R. P., Lu, J., Gavrilin, A. V, & Noyes, P. D. (2012). Design of a Superconducting 32 T Magnet With REBCO High Field Coils. IEEE Transactions on Applied Superconductivity, 22(3), 4300704. https://doi.org/10.1109/tasc.2011.2174952
  • [22] Hahn, S., Kim, K., Kim, K., Hu, X., Painter, T., Dixon, I., Kim, S., Bhattarai, K. R., Noguchi, S., Jaroszynski, J., & Larbalestier, D. C. (2019). 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet. Nature, 570(7762), 496-499. https://doi.org/10.1038/s41586-019-1293-1
  • [23] Nakamura, D., Ikeda, A., Sawabe, H., Matsuda, Y. H., & Takeyama, S. (2018). Record indoor magnetic field of 1200 T generated by electromagnetic flux-compression. Review of Scientific Instruments, 89(9), 95106. https://doi.org/10.1063/1.5044557
  • [24] Liu, Q., Zhang, S., Ding, L., Zuo, H., & Han, X. (2019). Magnetoresistance Measurement of Topological Quantum Materials in Pulsed High Magnetic Field. 2019 IEEE International Instrumentation andMeasurement Technology Conference (I2MTC), 1-6. https://doi.org/10.1109/I2MTC.2019.8827073
  • [25] Courts, S. S. (2003). Review of CernoxT M (Zirconium Oxy-Nitride) Thin-Film Resistance Temperature Sensors. AIP Conference Proceedings, 684, 393-398. https://doi.org/10.1063/1.1627157
  • [26] Kowalewski, A., Wróbel, J., Boguski, J., Gorczyca, K., & Martyniuk, P. (2019). Semiconductor contact layer characterization in a context of hall effect measurements. Metrology and Measurement Systems, 26(1), 109-114. https://doi.org/10.24425/mms.2019.126324
  • [27] Mleczko, K., & Ptak, P. (2015). Low-temperature properties of RuO2-based resistors. Scientific Journals of Rzeszów University of Technology, Series: Electrotechnics, 275-294. https://doi.org/10.7862/re.2015.21
  • [28] ZurichInstruments. (n.d.). Hall Effect for Sensing and Materials Characterization. https://www.zhinst.com/europe/en/publications/hall-effect-sensing-and-materials-characterization
  • [29] Vaklinova, K. (2017). Spin Transport in Topological Insulator-Based Nanostructures, [Doctoral dissertation, École Polytechnique Fédérale de Lausanne]. https://doi.org/10.5075/epfl-thesis-7585
  • [30] Chiatti, O., Riha, C., Lawrenz, D., Busch, M., Dusari, S., Sánchez-Barriga, J., Mogilatenko, A., Yashina, L. V, Valencia, S., Ünal, A. A., Rader, O., & Fischer, S. F. (2016). 2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes. Scientific Reports, 6(1). https://doi.org/10.1038/srep27483
  • [31] Meyyappa, M. (2007). Nanotechnology Measurement Handbook. A Guide to Electrical Measurements for Nanoscience Applications. Keithley Instruments, Inc. https://download.tek.com/document/1KW-30011-0%20NanotechHandbook.pdf
  • [32] Suslov, A. V. (2010). Stand alone experimental setup for dc transport measurements. Review of Scientific Instruments, 81(7), 75111. https://doi.org/10.1063/1.3463691
  • [33] Nawrocki, W. (2005). Measurement Systems and Sensors. Artech House
  • [34] Sewell, R. H., Musca, C. A., Dell, J. M., Faraone, L., Usher, B. F., & Dieing, T. (2005). High-resolution X-ray diffraction studies of molecular beam epitaxy-grown HgCdTe heterostructures and CdZnTe substrates. Journal of Electronic Materials, 34(6), 795-803. https://doi.org/10.1007/s11664-005-0023-7
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3cb8de2-0f92-42f6-b985-b8cdedb8dc67
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.