Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The profile of microbial diversity in a NABR digesting RPMW was investigated using phylogenetic analysis of partial 16S rRNA sequences by a neighbor-joining-tree, supported by microbial morphology analysis by SEM. The results showed that microorganism inside NABR consisted of dominant Bacillus (25 strains) and Bacterium (1 strain) which were isolated from the settled sludge at the bottom of the reactor, whilst Bacillus (2 strains), Pseudomonas (2 strain) and Chryseobacterium (2 strain) were isolated from the biofilm formed on the packing material. It revealed that the microbial community strains, function, and structure changed simultaneously throughout the reactor system. The microscopic results showed rich biofacies, while the dominant microorganisms have various morphologies in every compartment of the system. It consisted of a long rod-shaped and filamentous bacterium composed majorly of bacilli of different sizes. Although the study successfully analyzed the microbial diversity and morphology in the system, the microbial communities reported in this study were different from other similar studies. This may be caused by the application of a culture-based technique that usually provides limited information due to the number of barely cultivated or uncultured strains.
Czasopismo
Rocznik
Tom
Strony
9--17
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
- College of Water Resources Engineering, Al-Qasim Green University, 51013 Al-Qasim Province, Babylon, Iraq
autor
- College of Medical and Health Technologies, Al-Zahraa University for Women, Karbala 56100, Iraq
autor
- College of Engineering, University of Kerbala, Karbala 56100, Iraq
- College of Medical and Health Technologies, Al-Zahraa University for Women, Karbala 56100, Iraq
autor
- College of Medical and Health Technologies, Al-Zahraa University for Women, Karbala 56100, Iraq
autor
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Penang, Malaysia
- Solid Waste Management Cluster, Science and Engineering Research Centre, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, 14300 Nibong Tebal, Penang, Malaysia
autor
- College of Engineering, University of Kerbala, Karbala 56100, Iraq
Bibliografia
- 1. Araujo, J.C., Téran, F.C., Oliveira, R.A., Nour, E.A.A., Montenegro, M.A.P., Campos, J.R. & Vazoller, R.F. (2003). Comparison of hexamethyldisilazane and critical point drying treatments for SEM analysis of anaerobic biofilms and granular sludge, Journal of Electron Microscopy, 52, 4, pp. 429-433. DOI: 10.1093/jmicro/52.4.429
- 2. Atashpaz, S., Khani, S., Barzegari, A., Barar, J., Vahed, S.Z., Azarbaijani, R. & Omidi, Y. (2010). A robust universal method for extraction of genomic DNA from bacterial species, Microbiology, 79, 4, pp. 538-542. PMID:21058509
- 3. Ausubel, F., Brent, R., Kingston, R., Moore, D., Seidman, J., Smith, J. & Struhl, K. (2003). Current Protocols in Molecular Biology, John Wiley & Sons.
- 4. Bailon-Salas, A.M., Ordaz-Díaz, L.A., Valle-Cervantes, S., López-Miranda, J., Urtiz-Estrada, N., Páez-Lerma, J.B. & Rojas-Contreras, J.A. (2018). Characterization of Culturable Bacteria from Pulp and Paper Industry Wastewater, with the Potential for Degradation of Cellulose, Starch, and Lipids, Bioresourses.com 13(3), pp. 5052-5064.
- 5. Banach-Wiśniewska, A., Gamoń, F. & Ziembińska-Buczyńska, A. (2021). DNA vs RNA based studies of nitrogen removal bacteria genes via qPCR, Archives of Environmental Protection, 47, 1, pp. 19-25. DOI: 10.24425/aep.2021.136444
- 6. Chandra, R. (2001). Microbial decolourisation of pulp and paper mill effluent in presence of nitrogen and phosphorus by activated sludge process, Journal of Environmental Biology, 22, 1, pp. 23-27. PMID:11480347
- 7. Duran, M., Tepe, N., Yurtsever, D., Punzi, V., Bruno, C. & Mehta, R. (2006). Bioaugmenting anaerobic digestion of biosolids with selected strains of Bacillus, Pseudomonas, and Actinomycetes species for increased methanogenesis and odor control, Applied Microbiology and Biotechnology, 73, 4, pp. 960-966. DOI: 10.1007/s00253-006-0548-6
- 8. Gao, M., Guo, B., Zhang, L., Zhang, Y. & Liu, Y. (2019). Microbial community dynamics in anaerobic digesters treating conventional and vacuum toilet flushed blackwater, Water Research, 160, 249-258. DOI: 10.1016/j.watres.2019.05.077
- 9. Gobi, K. & Vadivelu, V.M. (2015). Polyhydroxyalkanoate recovery and effect of in situ extracellular polymeric substances removal from aerobic granules, Bioresource Technology, 189, 169-176. DOI: 10.1016/j.biortech.2015.04.023
- 10. Hassan, S.R., Zwain, H.M. & Dahlan, I. (2013). Development of Anaerobic Reactor for Industrial Wastewater Treatment: An Overview, Present Stage and Future Prospects, Journal of Advanced Scientific Research, 4, 1, pp. 07-12.
- 11. Hooda, R., Bhardwaj, N.K. & Singh, P. (2015). Screening and Identification of Ligninolytic Bacteria for the Treatment of Pulp and Paper Mill Effluent, Water, Air, & Soil Pollution, 226, 9, pp. 305. DOI: 10.1007/s11270-015-2535-y
- 12. Kenzaka, T. & Tani, K. (2012) Scanning Electron Microscopy, IntechOpen.
- 13. Kozłowski, K., Dach, J., Lewicki, A., Malińska, K., do Carmo, I.E.P. & Czekała, W. (2019). Potential of biogas production from animal manure in Poland, Archives of Environmental Protection, 45, 3, pp. 99-108. DOI: 10.24425/aep.2019.128646
- 14. Liu, J., Li, D. & Yang, J. (2008). Experimental research on the phase separation of Anaerobic Baffled Reactor (ABR), J. Biotechnol, 136, S657.
- 15. Mehta, J., Sharma, P. & Yadav, A. (2014). Screening and Identification of Bacterial Strains for Removal of COD from Pulp and Paper Mill Effluent, Advances in Life Sciences and Health, 1, 1, pp. 34-42.
- 16. Ran, Z., Gefu, Z., Kumar, J.A., Chaoxiang, L., Xu, H. & Lin, L. (2014). Hydrogen and methane production in a bio-electrochemical system assisted anaerobic baffled reactor, International Journal of Hydrogen Energy, 39, 25, pp. 13498-13504. DOI: 10.1016/j.ijhydene.2014.02.086
- 17. Shah, F.A., Mahmood, Q., Shah, M.M., Pervez, A. & Asad, S.A. (2014). Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis, The Scientific World Journal, 2014, 21. DOI: 10.1155/2014/183752
- 18. Sonakya, V., Raizada, N. & Kalia, V. (2001). Microbial and enzymatic improvement of anaerobic digestion of waste biomass, Biotechnology Letters, 23, 18, pp. 1463-1466. DOI: 10.1023/A:1011664912970
- 19. Świątczak, P., Cydzik-Kwiatkowska, A. & Rusanowska, P. (2017). Microbiota of anaerobic digesters in a full-scale wastewater treatment plant, Archives of Environmental Protection, 43, 3, pp. DOI: 10.1515/aep-2017-0033
- 20. Thompson, G., Swain, J., Kay, M. & Forster, C.F. (2001). The treatment of pulp and paper mill effluent: a review, Bioresource Technology, 77, 3, pp. 275-286. DOI: 10.1016/S0960-8524(00)00060-2
- 21. Tiku, D.K., Kumar, A., Chaturvedi, R., Makhijani, S.D., Manoharan, A. & Kumar, R. (2010). Holistic bioremediation of pulp mill effluents using autochthonous bacteria, International Biodeterioration & Biodegradation, 64, 3, pp. 173-183. DOI: 10.1016/j.ibiod.2010.01.001
- 22. Tsavkelova, E., Prokudina, L., Egorova, M., Leontieva, M., Malakhova, D. & Netrusov, A. (2018). The structure of the anaerobic thermophilic microbial community for the bioconversion of the cellulose-containing substrates into biogas, Process Biochemistry, 66, pp. 183-196. DOI: 10.1016/j.procbio.2017.12.006
- 23. U.S. National Library of Medicine (2021). National Center for Biotechnology Information, (http://blast.ncbi.nlm.nih.gov/Blast.cgi/ (16.6.2021)).
- 24. Yu, Y., Lu, X. & Wu, Y. (2014). Performance of an Anaerobic Baffled Filter Reactor in the Treatment of Algae-Laden Water and the Contribution of Granular Sludge, Water, 6, 1, pp. 122-138. DOI: 10.3390/w6010122
- 25. Zainith, S., Purchase, D., Saratale, G.D., Ferreira, L.F.R., Bilal, M. & Bharagava, R.N. (2019). Isolation and characterization of lignin-degrading bacterium Bacillus aryabhattai from pulp and paper mill wastewater and evaluation of its lignin-degrading potential, 3 Biotech, 9, 92. DOI: 10.1007/s13205-019-1631-x
- 26. Zwain, H.M., Aziz, H.A. & Dahlan, I. (2016a). Effect of inoculum source and effluent recycle on the start-up performance of a modified anaerobic inclining-baffled reactor treating recycled paper mill effluent, Desalination and Water Treatment, 57, 45, pp. 21350-21363. DOI: 10.1080/19443994.2015.1119758
- 27. Zwain, H.M., Aziz, H.A. & Dahlan, I. (2018). Performance of modified anaerobic inclining-baffled reactor treating recycled paper mill effluent: effects of influent chemical oxygen demand concentration and hydraulic retention time, Environmental Technology, 39, 12, pp. 1557-1565. DOI: 10.1080/09593330.2017.1332692
- 28. Zwain, H.M., Aziz, H.A., Ng, W.J. & Dahlan, I. (2017). Performance and microbial community analysis in a modified anaerobic inclining-baffled reactor treating recycled paper mill effluent, Environmental Science and Pollution Research, 24, 14, pp. 13012-13024. DOI: 10.1007/s11356-017-8804-0
- 29. Zwain, H.M., Aziz, H.A., Zaman, N.Q. & Dahlan, I. (2016b). Effect of inoculum to substrate ratio on the performance of modified anaerobic inclining-baffled reactor treating recycled paper mill effluent, Desalination and Water Treatment, 57, 22, pp. 10169-10180. DOI: 10.1080/19443994.2015.1033761
- 30. Zwain, H.M., Hassan, S.R., Zaman, N.Q., Aziz, H.A. & Dahlan, I. (2013). The start-up performance of modified anaerobic baffled reactor (MABR) for the treatment of recycled paper mill wastewater, Journal of Environmental Chemical Engineering, 1, 1-2, pp. 61-64. DOI: 10.1016/j.jece.2013.03.007
- 31. Zwain, H.M., Naje, A.S., Vakili, M. & Dahlan, I. (2021). Temperature analysis of a novel MAIB reactor during the treatment of wastewater from recycled paper mill, Water Practice and Technology, 16 (2): pp. 592-604. DOI: 10.2166/wpt.2021.023
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3ca7d9e-0d67-4d6b-be27-e79cb496d13d