Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Here, we estimate the degree of approximation of a conjugate function ğ and a derived conjugate function ğ′, of a 2 π-periodic function g ∈ Zλr, r ≥ 1, using Hausdorff means of CFS (conjugate Fourier series) and CDFS (conjugate derived Fourier series) respectively. Our main theorems generalize four previously known results. Some important corollaries are also deduced from our main theorems. We also partially review the earlier work of the authors in respect of order of the Euler-Hausdorff product method.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
370--387
Opis fizyczny
Bibliogr. 43 poz.
Twórcy
autor
- Department of Mathematics, Central University of South Bihar, Gaya, Bihar, India
Bibliografia
- [1] Kushwaha J. K., On the approximation of generalized Lipschitz function by Euler means of conjugate series of Fourier series, Sci. World J., 2013, Article ID. 508026
- [2] Nigam H. K., Sharma K., A study on degree of approximation by Karamata summability method, J. Inequal. Appl., 2011, 85(1), 1-28
- [3] Qureshi K., On the degree of approximation of a periodic function f by almost Riesz means of its conjugate series, Indian J. Pure Appl. Math., 1982, 13(10), 1136-1139
- [4] Qureshi K., On the degree of approximation of functions belonging to the Lipschitz class by means of a conjugate series, Indian J. Pure Appl. Math., 1981, 12(9), 1120-1123
- [5] Qureshi K., On the degree of approximation of functions belonging to the Lip(α, p) by means of a conjugate series, Indian J. Pure Appl. Math., 1982, 13(5), 560-563
- [6] Qureshi K., On the degree of approximation to a function belonging to weighted (Lp, ξ1(t)) class, Indian J. Pure Appl. Math., 1982, 13(4), 471-475
- [7] Lal S., Nigam H. K., Degree of approximation of conjugate of a function belonging to Lip(ξ(t), p)-class by matrix summability means of conjugate Fourier series, Int. J. Math. Math. Sci., 2001, 27, 555-563
- [8] Lal S., On the degree of approximation of conjugate of a function belonging to weighted W(Lp, ξ(t)) class by matrix summability means of conjugate series of a Fourier series, Tamkang J. Math., 2002, 31(4), 279-288
- [9] Rhoades B. E., Hausdorff summability methods, Trans. Am. Math. Soc., 1961, 101, 396-425
- [10] Mittal M. L., Singh U., Mishra V. N., Approximation of functions (signals) belonging to W(Lp, ξ(t))-class by means of conjugate Fourier series using Nörlund operators, Varahmihir J. Math. Sci. India, 2006, 6(1), 383-392
- [11] Mishra V. N., On the degree of approximation of signals (functions) belonging to the weighted W(Lp, ξ(t)), (p ≥ 1)-class by almost matrix summability method of its conjugate Fourier series, Int. J. Appl. Math. Mech., 2009, 5(7), 16-27
- [12] Kranz R., Lenski W., Szal B., On the degrees of approximation of functions belonging to Lp (ῶ)β class by matrix means of conjugate Fourier series, Math. Inequal. Appl., 2012, 15(3), 717-732
- [13] Lal S., Singh H. P., The degree of approximation of conjugates of almost Lipschitz functions by (N, p, q) (E, 1) means, Int. Math. Forum, 2010, 5(34), 1663-1671
- [14] Lal S., Singh P. N., Degree of approximation of conjugate of Lip(α, p) function by (C, 1) (E, 1) means of conjugate series of a Fourier series, Tamkang J. Math, 2002, 33(3), 269-274
- [15] Dhakal B. P., Approximation of the conjugate of a function belonging to the W (Lp, ξ(t)) class by (N, pn) (E, 1) means of the conjugate series of the Fourier series, Kathmandu University Journal of Science, Engineering and Technology, 2009, 5(II), 30-36
- [16] Mishra V. N., Khan H. H., Khatri K., Mishra L. N., On approximation of conjugate of signals (functions) belonging to the generalized weighted W (Lr, ξ(t)), (r ≥ 1)-class by product summability means of conjugate series of Fourier series, Int. J. Math. Anal., 2012, 6(35), 1703-1715
- [17] Nigam H. K., Sharma A., On approximation of conjugate of a function belonging to weighted W (Lr, ξ(t))-class by product means, Int. J. Pure Appl. Math., 2011, 70(3), 317-328
- [18] Nigam H. K., Sharma A., On approximation of conjugate of functions belonging to different classes by product means, Int. J. Pure Appl. Math., 2012, 76(2), 303-316
- [19] Nigam H. K., Sharma A., On approximation of conjugate of a function belonging to Lip(ξ(t), r) class by product summability means of conjugate series of Fourier series, Int. J. Contemp. Math. Sci., 2010, 5(54), 2673-2683
- [20] Nigam H. K., Sharma K, Approximation of conjugate of functions belonging to Lip α class and W(Lr, ξ(t))-class by product means of conjugate Fourier series, Eur. J. Pure Appl. Math., 2011, 4(3), 276-286
- [21] Padhy B. P., Buxi S. K., Misra M., Misra U. K., On degree of approximation by product means (E, q)(Ñ, pn) of conjugate series of Fourier series, Int. J. Math. Sci. Eng. Appl., 2002, 6(I), 363-370
- [22] Rhoades B. E., A method of Hausdorff summability, Math. Z., 1963, 81, 62-75
- [23] Rhoades B. E., Sharma, N. K., Spectral results for some Hausdorff matrices, Acta Sci. Math., 1982, 44, 359-364
- [24] Petersen G. M., Regular Matrix Transformations, McGraw-Hill, London, 1966
- [25] Singh U., Srivastava S. K., Approximation of conjugate of functions belonging to weighted Lipschitz class W(Lp, ξ(t)) by Hausdorff means of conjugate Fourier series, J. Comput. Appl. Math. 2014, 259, 633-640
- [26] Lal S., Mishra A., Euler-Hausdorff matrix summability operator and trigonometric approximation of the conjugate of a function belonging to the generalized Lipschitz class, J. Inequal. Appl., 2013, 2013:59
- [27] Zygmund A., Trigonometric series, Cambridge Univ. Press, Cambridge, 3rd rev. ed., 2002
- [28] Moursund A. F., On summation of derived series of the conjugate Fourier series, 1935, 36(1), 182-193
- [29] Chandra P., Dikshit G. D., On the |B| and |E, q| summability of a Fourier series, its conjugate series and their derived series, Indian J. Pure Appl. Math., 1981, 12(11), 1350-1360
- [30] Lal S., Nigam H. K., On Kλ-summability of derived Fourier series, Ultra Scientist of Physical Sciences, 20002, 12(3), 198-285
- [31] Lal S., Yadav P., (N, p, q)(C, 1) summability of derived series of a Fourier series, Bull. Col. Math. Soc., 2001, 93(2), 85-92
- [32] Mursaleen M., Alotaibi A., Generalized matrix summability of a conjugate derived Fourier series, J. Inequal. Appl., 2017, 2017:273
- [33] Hausdorff F., Summationsmethoden und Momentfolgen, Math. Z, 1921, 9, I:74-109, II: 280-289
- [34] Boos J., Cass P., Classical and Modern Methods in Summability, Oxford University Press, New York, 2000
- [35] Garabedian H. L., Hausdorff matrices, Amer. Math. Monthly, 1939, 46(7), 390-410
- [36] Keska S., The degree of approximation by Hausdorff means of a conjugate Fourier series, Annales Universitatis Mariae Curie-Sklodowska, 2016, 70(2), 63-82
- [37] Geit V. É., On functions which are the second modulus of continuity, Izv. Vyssh. Ucheb. Zaved, Mat., 1998, 9, 38-41 [Russ. Math., 1998, 42(9), 36-38]
- [38] Konyagin S. V., On the second moduli of continuity, In: Proceedings of the Stekov Institute of Mathematics, 2010, 269, 143-145
- [39] Weiss M., Zygmund A., A note on smooth functions, Indag. Math., 1959, 21, 52-58
- [40] Zygmund A., A remark on the integral modulus of continuity, Rev. Univ. Nac. Tucuman, 1950, 7, 259-269
- [41] Singh M. V., Mittal M. L., Rhoades B. E., Approximation of functions in the generalized Zygmund class using Hausdorff means, J. Inequal. Appl., 2017, 2017:101
- [42] Chui C. K., An introduction to wavelets (Wavelet analysis and its applications), Academic Press, USA, 1992, 1
- [43] Rhoades B. E., The degree of approximation of functions, and their conjugates, belonging to several general Lipschitz classes by Hausdorff matrix means of the Fourier series and conjugate series of a Fourier series, Tamkang J. Math., 2014,45(4), 389-395
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3c6c492-07f9-4afa-ab48-f0e92b1d8d4a