PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Technological model of water contact iron removal

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Technologiczny model usuwania żelaza z wody metodą kontaktową
Języki publikacji
EN
Abstrakty
EN
Different types of filters are used to remove iron from underground water, one of them is foam polystyrene. Depending on the chemical water composition, tasks for water supply and other working conditions of iron-removing filters, it is necessary to define an exact grain size, specific granulometric composition, the thickness of the layer and the adequate rate of filtration. This kind of problems is multifactorial and its solution is based on the mathematical modelling. As a rule, two parallel processes considered during iron removal of underground water in filters: efficiency of water treatment and growth of head losses. Therefore, the model of water iron removal based on two main blocks, clarifying block takes into account the material balance and kinetics of the process; hydrodynamic block describes the dynamics of head loss in the granular loading. The kinetics of the detention of iron compounds in granular loading consists of two mutually opposite processes. With an increase of the amount of adsorption-catalytic precipitate, the rate of sorption of iron compounds and oxidation of ferric iron increases and the efficiency of iron-removing increases. On the other hand, with decreasing porosity of loading the true velocity of the fluid increases, that reduces the intensity of adhesion of iron compounds. Developed mathematical model allows for determining optimal values of structural and technological parameters of iron-removing filters taking into consideration the specific filtering conditions.
PL
Do odżelaziania wód podziemnych stosowane są różne typy filtrów, jednym z nich są filtry ze spienionego polistyrenu. W zależności od składu chemicznego wody, jej przeznaczenia i warunków pracy filtrów należy określić dokładny rozmiar ziaren, skład granulometryczny, grubość warstwy filtrującej i odpowiednie tempo filtracji. Tego rodzaju problemy są wieloczynnikowe, a ich rozwiązanie opiera się na modelowaniu matematycznym. Podczas usuwania żelaza z wody gruntowej w filtrach z reguły bierze się pod uwagę dwa równoległe procesy – efektywność uzdatniania wody i wzrost strat w głowicy. Dlatego opracowany model usuwania żelaza z wody oparty jest na dwóch podstawowych blokach: oświetleniowym – uwzględnia się bilans materiałowy i kinetykę procesu; bloku hydrodynamicznym – opisującym dynamikę spadku ciśnienia w ziarnistym wypełnieniu. Kinetyka zatrzymywania związków żelaza w ziarnistym wypełnieniu składa się z dwóch przeciwnych procesów. Wraz ze wzrostem ilości osadu adsorpcyjnokatalitycznego wzrasta też szybkość sorpcji związków żelaza i utleniania żelaza dwuwartościowego, a także zwiększa się skuteczność usuwania żelaza. Z drugiej strony, w warunkach malejącej porowatości wypełnienia, wzrasta rzeczywista prędkość płynu, co zmniejsza intensywność adhezji związków żelaza. Zbudowany model matematyczny pozwala na określenie optymalnych wartości parametrów strukturalnych i technologicznych dla filtrów usuwających żelazo z uwzględnieniem specyfiki warunków filtracji.
Wydawca
Rocznik
Tom
Strony
93--99
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
  • National University of Water and Environmental Engineering, Department of Water Supply, Water Disposal and Drilling Engineering, Ukraine
autor
  • National University of Water and Environmental Engineering, Department of Labour Security, Health and Safety, Ukraine
autor
  • National University of Water and Environmental Engineering, Department of Labour Security, Health and Safety, Ukraine
autor
  • National University of Water and Environmental Engineering, Department of Science and Research, Ukraine
autor
  • National University of Water and Environmental Engineering, Department of Automation, Electrical and Computer-Integrated Technologies, Ukraine
autor
  • National University of Water and Environmental Engineering, Department of Hydroinformatics, 11 Soborna St., Rivne, 33028, Ukraine
Bibliografia
  • ATTOUI B., TOUMI N., MESSAOUDI S., BENRABAH S. 2016. Degradation of water quality: the case of plain west of Annaba (northeast of Algeria). Journal of Water and Land Development. No. 31 p. 3–10. DOI 10.1515/jwld-2016-0031.
  • BARLOKOVA D., ILAVSKY J. 2010. Removal of iron and manganese from water using filtration by natural materials. Polish Journal of Environmental Studies. Vol. 19. No. 6 p. 1117–1122.
  • CONNER D.O. 1989. Removal of iron and manganese. Water Sewage Works. No. 28 pp. 68.
  • EPOYAN S., KARAHIAUR A., VOLKOV V., BABENKO S. 2018. Research into the influence of vertical drainage elements on the operational efficiency of rapid filters. Eastern-European Journal of Enterprise Technologies. Vol. 1. No 10(91) p. 62–69. DOI 10.15587/179-4061.2018.123559.
  • FYLYPCHUK V., INDUCHNY S., PEARCE P., FYLYPCHUK L., MARTYNOV S. 2017. Application of expanded polystyrene filter for tertiary treatment of domestic waste effluent in the UK. Journal of Water and Land Development. No. 35 p. 41–47. DOI 10.1515/jwld-2017-0066.
  • GANG L., ZHANG Ya, KNIBBE W., FENG C., WENTSO L., MEDEMA G., MEER W. 2017. Potential impacts of changing supplywater quality on drinking water distribution: A review. Water Research. Vol. 116 p. 135–148. DOI 10.1016/j.watres.2017.03.031.
  • HANSLIK E., MARESOVA D., JURANOVA E., VLNAS R. 2016. Dependence of selected water quality parameters on flow rates at river sites in the Czech Republic. Journal of Sustainable Development of Energy, Water and Environment Systems. Vol. 4(2) p 127–140. DOI: 10.13044/j.sdewes.2016.04.0011.
  • IVANCHUK N., MARTYNYUK P., TSVETKOVA T., MICHUTA O. 2017. Mathematical modeling and computer simulation of the filtration processes in earth dams. Eastern European Journal of Enterprise Technologies. No. 2(6) p. 63–69. DOI 10.15587/1729-4061.2017.98712.
  • JECHLINGER G., KASPER W. 1985. The removal of iron and manganese in groundwater through aeration underground. Water Supply. Vol. 3. p. 19-25.
  • KHATRIA N., TYAGIA S., RAWTANI D. 2017. Recent strategies for the removal of iron from water: A review. Journal of Water Process Engineering. Vol. 19 p. 291–304. DOI 10.1016/j.jwpe.2017.08.015.
  • LAVANYA R.S., ULAVI S., LOKESH K.S. 2014. Water softening and de-ironing of ground water using sulfonated polystyrene beads. International Journal of Engineering Research and Technology. Vol. 3. Iss. 6 p. 2124–2127.
  • LIEFFERINK S.L., VAN EEDEN E.S., WEPENER V. 2017. Past, present and future use of municipal water and freshwater resources of the Bekkersdal Community, Westonaria, South Africa. Journal of Sustainable Development of Energy, Water and Environment Systems. Vol. 5(3) p 430–446. DOI 10.13044/j.sdewes. d5.0155.
  • MADHUKAR M., LAVANYA R.S., AMRUTHA M.B. 2013. Defluoridation and deironing of ground water using polystyrene beads. Water Science and Technology Water Supply. Vol. 13(6) p. 1507–1512. DOI 10.2166/ws.2013. 116.
  • MARSIDI N., ABDULLAH S. 2018. A review of biological aerated filters for iron and manganese ions removal in water treatment. Journal of Water Process Engineering. Vol. 23 p. 1–12. DOI 10.1016/j.jwpe.2018.01.010.
  • MARTYNIUK P.M., KUTIA T.V., OSTAPCHUK O.P., PINCHUK O.L. 2018. Filtration equation and movement of the wetting interface in case of pressure pipeline breakthrough under the conditions of variable porosity. JP Journal of Heat and Mass Transfer. Vol. 15. Iss. 2 p. 281–293. DOI 10.17654/HM015020281.
  • MARTYNOV S., KUNITSKIY S., ORLOVA A. 2017. A simulation study of surface water purifying through a polystyrene foam filter. Eastern European Journal of Enterprise Technologies. Ecology. Vol. 5. No. 10 (89) p. 19–26.
  • MIODUSZEWSKI W. 2009. Water for agriculture and natural environment. Journal of Water and Land Development. No. 13b p. 3–16.
  • ORLOV V., MARTYNOV S., KUNITSKIY S. 2016a. Energy saving in water treatment technologies with polystyrene foam filters. Journal of Water and Land Development. No. 31 p. 119–122. DOI 10.1515/jwld-2016-0042.
  • ORLOV V., MARTYNOV S., KUNITSKY S. 2016b. Water ironremoving in polystyrene foam filters with sediment layer. Saarbrücken. LAP LAMBERT Academic Publishing. ISBN 978-3-659-91657-1 pp. 104.
  • ORLOV V., MARTYNOV S., ORLOVA A. 2012. Ochyshhennya pryrodnoyi vody na pinopolistyrolnyh filtrah [Purification of source water in foam polystyrene filters]. Rivne. NUWEE. ISBN 978-966-327-214-6 pp. 172.
  • ORLOV V., SAFONYK A., MARTYNOV S., KUNYTSKYI S. 2016c. Simulation the process of iron removal the underground water by polystyrene foam filters. International Journal of Pure and Applied Mathematics. Vol. 90. Iss. 2 p. 87–91.
  • POLYAKOV V.L. 2009. Teoreticheskiy analiz vremeni raboty fil'tra [The theoretical analysis of the filter run time]. Khimiya i Tekhnologiya Vody. Vol. 31. No. 6 p. 605–618.
  • POLYAKOV V.L. 2011. Inzhenernyy raschet fil'tratsii suspenzii cherez dvukhsloynuyu sredu pry lineynoy kinetike massoobmena [The engineering calculation of filtering a suspension through a two-layer medium in linear kinetics of mass exchange]. Khimiya i Tekhnologiya Vody. Vol. 33. No. 4 p. 367–380.
  • SAFONYK A., MARTYNOV S., KUNYTSKYI S., PINCHUK O. 2018. Mathematical modelling of regeneration the filtering media bed of granular filters. Advances in Modelling and Analysis C. Vol. 73. No. 2 p. 72–78.
  • SHIRAZI S.M., ADHAM M.I., ZARDARI N.H., ISMAIL Z., IMRAN H.M., MANGRIO M.A. 2015. Groundwater quality and hydrogeological characteristics of Malacca state in Malaysia. Journal of Water and Land Development. Vol. 24 p. 11–19. DOI 10.1515/jwld-2015-0002.
  • SMOROŃ S. 2016. Quality of shallow groundwater and manure effluents in a livestock farm. Journal of Water and Land Development. Vol. 29 p. 59–66. DOI 10.1515/ jwld-2016-0012.
  • STANKJAVICHUS V. 1978. Obezzhelezivanie vody fil'trovaniem (osnovy teorii i raschet ustanovok) [Water iron-removing by filtration (fundamentals of the theory and calculation of installations)]. Vil'njus. Mokslas pp. 120.
  • ŚLESICKI M. 2009. Application of mathematical modelling methods in the protection of groundwater environment. Journal of Water and Land Development. No. 13b p. 31–39.
  • VLASYUK A.P., ZHUKOVSKA N.A., ZHUKOVSKYY V.V., KLOSWITKOWSKA A., PAZDRIY I., IATSYKOVSKA U. 2017. Mathematical simulation of the stressed-strained state of the foundation of earth dams with an open surface under the influence of heat and mass transfer in the two-dimensional case. In: Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications. Proceedings of the 2017 IEEE 9th International Conference. IDAACS. Vol. 1 p. 265–269. DOI 10.1109/IDAACS.2017.8095088.
  • VOLTZ T.J., GRISCHEK T., SPITZNER M. KEMNITZ J., IRMSCHER R. 2014. Raising energy efficiency of high-head drinking water pumping schemes in Hilly India – massive potential, complex challenges. Journal of Sustainable Development of Energy, Water and Environment Systems. Vol. 2. Iss. 2 p. 118–126.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3ba6cd7-5e39-4656-aa66-3ed4928be92f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.