Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Microbiological degradation of plastics
Języki publikacji
Abstrakty
W pracy poruszono zagadnienia związane z biodegradacją tworzyw sztucznych, których usuwanie ze środowiska naturalnego stało się ogromnym wyzwaniem. Opisano proces degradacji polimerów przez mikroorganizmy oraz przedstawiono podstawowe techniki badań pozwalające na zbadanie stopnia rozkładu tworzyw sztucznych.
Plastics are long chain synthetic polymers produced based on fossil fuels such as oil and natural gas. Due to their properties, like lightness, durability, strength, flexibility, and low production costs, they have become indispensable in everyday life. Every year, the amount of polymers produced increases, in 2020 only in Europe 49.1 million tonnes of polymers were produced. With the increasing production of plastics and their widespread use, a global problem with the accumulation of waste in the natural environment has arisen. In Europe, synthetic waste is mostly incinerated (42.6%) and recycled (34.6%). In the natural environment, plastics can be degraded both by abiotic processes and by biodegradation (Fig.5.). The susceptibility to degradation of polymers depends on their physicochemical properties, the length of the polymer chain, and their composition. Long-chain polymers containing only carbon, such as polyethylene and polypropylene, are more resistant to degradation, while in the case of polyurethane and polyethylene terephthalate, the presence of heteroatoms in the chain, e.g. oxygen, causes greater susceptibility to biodegradation. The appearance of polymer waste in the natural environment caused many microorganisms to develop the ability to use plastics as a source of carbon and energy. The evolution of the metabolic systems of cells, which allows obtaining nutrients from polymers, somehow adapts microbes to live in the era of synthetic materials. Microorganisms equipped with the ability to degrade plastic have been characterized in many scientific studies (Tab. 2). The biodegradation of plastics is a complex process that depends on several factors: substrate availability, surface characteristics, morphology, and molecular weight. The first stage of biodegradation is the deposition of microorganisms on the surface of the polymer, which is largely influenced by the hydrophobicity / hydrophilicity of the material. Microorganisms then produce specific extracellular enzymes that break down the main polymer chain into smaller fragments – dimers and monomers. Then the polymer molecules are transported inside the cell and the final products of polymer decomposition are water, CO2, and biomass. Plastics are characterized by high durability and resistance to biodegradation, therefore pre-aging or pre-treatment of synthetic materials is often necessary. The purpose of these treatments is to modify the surface, which increases susceptibility to the action of enzymes secreted by microorganisms. The most commonly used pre-treatment techniques are UV, gamma, high temperature, and nitric acid treatment. These techniques either reduce hydrophobicity or introduce more biodegradable groups on the surface of the polymer. Describing the process of biodegradation of plastics is a technical challenge because it is a long-term process and difficult to study. The most commonly used methods of assessing the biodegradation of a polymer are the examination of the amount of mass lost by polymers, the examination of hydrophobicity and surface changes by imaging techniques such as SEM, and the chemical composition of polymers using Fourier transform infrared spectroscopy.
Słowa kluczowe
Rocznik
Tom
Strony
49--71
Opis fizyczny
Bibliogr. 42 poz., rys., tab., wykr.
Twórcy
autor
- Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
autor
- Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
autor
- Instytut Inżynierii Chemicznej Polskiej Akademii Nauk, ul. Bałtycka 5, 44-100 Gliwice
autor
- Department of Physical Chemistry of Fossil Fuels of the Institute of Physical-Organic Chemistry and Coal Chemistry named after L. M. Lytvynenko of the National Academy of Sciences of Ukraine, Naukova str, 79060, Lviv, Ukraine
Bibliografia
- [1] Stowarzyszenie producentów Tworzyw Sztucznych, Tworzywa – Fakty 2021 - Analiza produk-cji, zapotrzebowania oraz odzysku tworzyw sztucznych w Europie. https://plasticseurope.org/pl/.
- [2] I.E. Napper, R.C. Thompson, Environmental Deterioration of Biodegradable, Oxo-biodegrada-ble, Compostable, and Conventional Plastic Carrier Bags in the Sea, Soil, and Open-Air Over 3 years, Environ. Sci. Technol. 53 (2019), 4775−4783. DOI: 10.1021/acs.est.8b06984.
- [3] J.S. Jadaun, S. Bansal, A. Sonthalia, A.K. Rai, S.P. Singh, Biodegradation of plastics for sustain-able environment, Bioresource Technology. 347 (2022), 126697. DOI: 10.1016/j.biortech.2022.126697.
- [4] N. Mohanan, Z. Montazer, P.K. Sharma, D.B. Levin, Microbial and Enzymatic Degradation of Synthetic Plastics, Front. Microbiol. 11 (2020), 580709, 1-22. DOI: 10.3389/fmicb.2020.580709.
- [5] Y. Baldera-Moreno, V. Pino, A Farres, A.Banerjee, F. Gordillo, R. Andler, Biotechnological As-pects and Mathematical Modeling of the Biodegradation of Plastics under Controlled Conditions, Polymers. 14 (2022), 375. DOI: 10.3390/polym14030375.
- [6] SS. Ali, T. Elsamahy, R. Al-Tohamy, D. Zhu, Y.A. Mahmoud, E. Koutra, M.A. Metwally, M. Kornaros, J. Sun, Plastic wastes biodegradation: Mechanisms, challenges, and future prospects, Sci Total Environ. 780 (2021), 146590. DOI: 10.1016/j.scitotenv.2021.146590.
- [7] J. Arutchelvi, M. Sudhakar, A. Arkatkar, M. Doble, S. Bhaduri, P. Uppara, Biodegradation of polyethylene and polypropylene, Indian Journal of Biotechnology. 7 (2008), 9-22.
- [8] Z. Li, R. Wei, M. Gao, Y. Ren, B. Yu, K. Nie, H. Xu, L. Liu, Biodegradation of low-density polyethylene by Microbulbifer hydrolyticus IRE-31, Journal of Environmental Management, 263 (2020) 110402, DOI: 10.1016/j.jenvman.2020.110402.
- [9] S.K. Sen, S. Raut, Microbial degradation of low density polyethylene (LDPE): A review, Journal of Environmental Chemical Engineering. 3 (2015), 1: 462-473. DOI: 10.1016/j.jece.2015.01.003.
- [10] A. Farzi, A. Dehnad, N. Shirzad, F. Norouzifard, Biodegradation of high density polyethylene using Streptomyces species, Journal of Coastal Life Medicine. 5 (2017) 11: 474-479. DOI: 10.12980/jclm.5.2017J7-94.
- [11] R. Rani, J. Rathee, P. Kumari, N.P. Singh, A.R. Santal, Biodegradation and detoxification of low-density polyethylene by an indigenous strain Bacillus licheniformis, J Appl Biol Biotech. 10(01) (2022), 9–21. DOI: 10.7324/JABB.2021.100102.
- [12] T. Matjašič, T. Simčič, N. Medvešček, O. Bajt, T. Dreo, N. Mori, Critical evaluation of biodeg-radation studies on synthetic plastics through a systematic literature review, Science of The Total Environment, 752 (2021), 141959. DOI: 10.1016/j.scitotenv.2020.141959.
- [13] H. Nadeem, K.B Alia, F. Muneer, I. Rasul, M.H. Siddique, F. Azeem, M. Zubair, Isolation and identification of low-density polyethylene degrading novel bacterial strains, Arch Microbiol. 203 (2021), 5417–5423. DOI: 10.1007/s00203-021-02521-1.
- [14] B. Nowak, J. Pająk, M. Drozd-Bratkowicz, G. Rymarz, Microorganisms participating in the bio-degradation of modified polyethylene films in different soils under laboratory conditions, Inter-national Biodeterioration & Biodegradation, 65 (2011), 6: 757-767. DOI:10.1016/j.ibiod.2011.04.007.
- [15] S.P. Biki, S. Mahmud, S. Akhter, J. Rahman, J.J. Rix, A. Al Bachchu, M. Ahmed, Polyethylene degradation by Ralstonia sp. strain SKM2 and Bacillus sp. strain SM1 isolated from landfill soil site, Environmental Technology & Innovation, Volume 22 (2021) 101495, DOI: 10.1016/j.eti.2021.101495.
- [16] A. Kumari, D.R. Chaudhary, B. Jha, Destabilization of polyethylene and polyvinylchloride struc-ture by marine bacterial strain. Environ Sci Pollut Res. 26 (2019), 1507–1516. DOI: 10.1007/s11356-018-3465-1.
- [17] P.P. Vimala, L. Mathew, Biodegradation of Polyethylene using Bacillus subtilis, Procedia Tech-nology 24 ( 2016 ) 232 – 239. DOI: 10.1016/j.protcy.2016.05.031.
- [18] A. Nourollahi, S. Sedighi-Khavidak, M. Mokhtari, G. Eslami, M. Shiranian, Isolation and iden-tification of low-density polyethylene (LDPE)biodegrading bacteria from waste landfill in Yazd, International Journal of Environmental Studies,76 (2019), 2: 236-250. DOI 10.1080/00207233.2018.1551986.
- [19] J.M. Jeon, S.J. Park, T.R. Choi, J.H.Park, Y.H. Yang, J.J. Yoon, Biodegradation of polyethylene and polypropylene by Lysinibacillus species JJY0216 isolated from soil grove, Polymer Degra-dation, and Stability. 191 (2021), 109662. DOI: 10.1016/j.polymdegradstab.2021.109662.
- [20] S.D. Khandare, D.R Chaudhary, B. Jha, Marine bacterial biodegradation of low-density polyeth-ylene (LDPE) plastic. Biodegradation. 32 (2021), 127–143. DOI: 10.1007/s10532-021-09927-0.
- [21] B.M. Kyaw, R. Champakalakshmi, M.K. Sakharkar, C.S. Lim, K.R. Sakharkar, Biodegradation of Low Density Polythene (LDPE) by Pseudomonas Species, Indian J Microbiol. 52 (2012), 411–419. DOI: 10.1007/s12088-012-0250-6.
- [22] L. Maroof1, I. Khan, H.S. Yoo, S. Kim, H.T. Park, B. Ahmad, S. Azam, Identification and char-acterization of low density polyethylene-degrading bacteria isolated from soils of waste disposal sites, Environ. Eng. Res. 26 (2021), 3: 200167, DOI:10.4491/eer.2020.167.
- [23] Č. Novotný, K. Malachová, G. Adamus, M. Kwiecień, N. Lotti, M. Soccio, V. Verney, F. Fava, Deterioration of irradiation/high-temperature pretreated, linear low-density polyethylene (LLDPE) by Bacillus amyloliquefaciens, International Biodeterioration & Biodegradation. 132 (2018), 259-267. DOI:10.1016/j.ibiod.2018.04.014.
- [24] A. Kalia, M. S, Dhanya, Effect of Used Engine Oil and UV-Thermal Pretreatments on Biodegra-dation of Low-Density Polyethylene by Lysinibacillus fusiformis TPB, Journal of Scientific & Industrial Research. 81 (2022), 606-612.
- [25] P. Priyadarshini, S. Rafiq, S.K. Jasmine Shahina, K. Vijaya Ramesh, Biodegradation of Low Density Polyethylene(LDPE) by Nocardiopsis alba from municipal landfill in Chennai, Interna-tional Journal of Advanced Scientific Research and Management. 3 (2018) 8.
- [26] H. Zhang, Y. Lu, H. Wu, Q. Liu, W. Sun, Effect of an Acinetobacter pittobacter on low-density polyethylene. Environ Sci Pollut Res. (2022). DOI: 10.1007/s11356-022-22658-w
- [27] S. Samanta, D. Datta, G. Halder, Biodegradation efficacy of soil inherent novel sp. Bacillus trop-icus (MK318648) onto low density polyethylene matrix. J Polym Res. 27 (2020), 324. DOI: 10.1007/s10965-020-02296-x.
- [28] G. Singh, A. K. Singh, K. Bhatt, Biodegradation of polythenes by bacteria isolated from soil, Int. J. Res. Dev. Pharm. L. Sci. 5 (2016), 2: 2056-2062.
- [29] H.S. Auta, C.U. Emenike, B. Jayanthi, S.H. Fauziah, Growth kinetics and biodeterioration of polypropylene microplastics by Bacillus sp. and Rhodococcus sp. isolated from mangrove sedi-ment, Marine Pollution Bulletin. 127 (2018), 15-21. DOI: 10.1016/j.marpolbul.2017.11.036.
- [30] A. Arkatkar, A.A. Juwarkar, S. Bhaduri, P.V. Uppara, M. Doble, Growth of Pseudomonas and Bacillus biofilms on pretreated polypropylene surface, International Biodeterioration & Biodeg-radation. 64, (2010) 6: 530-536. DOI: 10.1016/j.ibiod.2010.06.002.
- [31] H.W. Kim, J.H. Jo, Y.B. Kim, T.K. Le, C.W. Cho, C.H. Yun, W.S. Chi, S.J. Yeom, Biodegrada-tion of polystyrene by bacteria from the soil in common environments, Journal of Hazardous Materials. 416 (2021), 126239. DOI:10.1016/j.jhazmat.2021.126239.
- [32] L. Giacomucci, N. Raddadi, M. Soccio, N. Lotti, F. Fava, Polyvinyl chloride biodegradation by Pseudomonas citronellolis and Bacillus flexus, New Biotechnology. 52(2019), 35-41. DOI: 10.1016/j.nbt.2019.04.005.
- [33] A. Kumari, N. Bano, S.K. Bag, D.R Chaudhary, B. Jha, Transcriptome-Guided Insights Into Plas-tic Degradation by the Marine Bacterium. Front. Microbiol. 12 (2021) 751571. DOI: 10.3389/fmicb.2021.751571.
- [34] A. Debroy, N. George, G. Mukherjee, Role of biofilms in the degradation of microplastics in aquatic environments, J Chem Technol Biotechnol. 97 (2022), 3271-3282. DOI: 10.1002/jctb.6978.
- [35] M. Santo, R. Weitsman, A. Sivan, The role of the copper-binding enzyme – laccase – in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber, International Biodete-rioration & Biodegradation. 84 (2013), 204-210. DOI: 10.1016/j.ibiod.2012.03.001.
- [36] S. Ghosh, A. Qureshi, H. Purohit, Microbial degradation of plastics: Biofilms and degradation pathways. In: Contaminants in Agriculture and Environment: Health Risks and Remediation, Agro Environ Media, 2019, Edition: 1, Chapter: 14, pp.184-199. DOI:10.26832/AESA-2019-CAE-0153-014.
- [37] I.Gilan (Orr),., Hadar, Y. & Sivan, A. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl Microbiol Biotechnol 65 (2004), 97–104. DOI: 10.1007/s00253-004-1584-8.
- [38] Y.N. Han, M. Wei, F. Han, C. Fang, D. Wang, Y.J. Zhong, C.L. Guo, X.Y. Shi, Z.K. Xie, F.M. Li, Greater Biofilm Formation and Increased Biodegradation of Polyethylene Film by a Microbial Consortium of Arthrobacter sp. and Streptomyces sp., Microorganisms. 8 (2020) 1979. DOI:10.3390/microorganisms8121979.
- [39] Z. Montazer, M.B. Habibi-Najafi, M. Mohebbi, Abdulrasool Oromiehei, Microbial Degradation of UV-Pretreated Low-Density Polyethylene Films by Novel Polyethylene-Degrading Bacteria Isolated from Plastic-Dump Soil, J Polym Environ, 26 (2018), 3613–3625. DOI: 10.1007/s10924-018-1245-0.
- [40] H. Rajandas, S. Parimannan, K. Sathasivam, M. Ravichandran, L.S. Yin, A novel FTIR-ATR spectroscopy based technique for the estimation of low-density polyethylene biodegradation, Pol-ymer Testing. 31(2012), 8: 1094-1099. DOI:10.1016/j.polymertesting.2012.07.015.
- [41] A.K. Chaudhary, K. Chaitanya, R.P. Vijayakumar, Synergistic effect of UV and chemical treat-ment on biological degradation of Polystyrene by Cephalosporium strain NCIM 1251, Arch Mi-crobiol 203 (2021), 2183–2191. DOI:10.1007/s00203-021-02228-3.
- [42] L. Tian, B. Kolvenbach, N. Corvini, S. Wang, N. Tavanaie, L. Wang, Y. Ma, S. Scheu, P. F.X. Corvini, R. Ji, Mineralisation of 14C-labelled polystyrene plastics by Penicillium variable after ozonation pre-treatment, New Biotechnology. 38, part B (2017), 101-105. DOI: 10.1016/j.nbt.2016.07.008.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3b14b9e-13b7-480b-bcb3-83892f797853