PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Correlated mutations in hydroxysteroid dehydrogenases family

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Background: Hydroxysteroid dehydrogenase enzymes belong to the short-chain dehydrogenase/reductase (SDR) superfamily and aldo-keto reductases (AKRs). SDR is involved in the metabolism of many compounds (hormones, lipids, etc.) and is present in almost all studied genomes. Two hundred members of hydroxysteroid dehydrogenases have been analysed in terms of natural mutational variability. The second superfamily comprises AKR superfamily group enzymes whose function is catalysing the oxidation and reduction of many substrates by binding NAD(P)H as a cofactor. This kind of study is the first approach for the hydroxysteroid dehydrogenase family. This information grants practical meaning to designing potential specific drugs to fight specific diseases caused by mutations. Methods: In the research, amino acid sequences of representatives of the hydroxysteroid dehydrogenase family were extracted from the UniProt database. In total, the analysed 200 sequences with the highest degree of similarity were shown by BLAST searches. In the sequence analyses, we used the following software: ClustalX (multiple sequence alignment), Consensus Constructor (creating consensus sequence), and CORM (finding correlated mutations). Results: The CORM program identified potential sites of correlated mutations in hydroxysteroid dehydrogenases. This program generated 18 tables of results that contain the amino acid positions of mutations. Seven of these are presented in this paper. Conclusions: The primary structure of the hydroxysteroid dehydrogenase family shows high variation.
Rocznik
Strony
17--23
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
  • Department of Molecular Biology, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
autor
  • Department of Molecular Biology, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
autor
  • Department of Molecular Biology, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
Bibliografia
  • 1. Persson B, Kallberg Y, Bray JE, Bruford E, Dellaporta SL, Favia AD, et al. The SDR (short-chain dehydrogenase/reductase and related enzymes) nomenclature initiative. Chemo-Biol Interact 2008;178:94–8.
  • 2. Penning TM. Hydroxysteroid dehydrogenases and pre-receptor regulation of steroid hormone action. Hum Reprod Update 2003;9:193–205.
  • 3. Kallberg Y, Oppermann U, Jörnvall H, Persson B. Short-chain dehydrogenase/reductase (SDR) relationships: a large family with eight clusters common to human, animal, and plant genomes. Prot Sci 2001;11:636–41.
  • 4. Kavanagh KL, Jörnvall H, Persson B, Oppermann U. The SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 2008;65:3895–906.
  • 5. Jornvall H, Persson M, Krook M, Atrian S, Gonzalez-Duarte R, Jeffrey J, et al. Short-chain dehydrogenases/reductases (SDR). Biochemistry 1995;34:6003–13.
  • 6. Su J, Lin M, Napoli JN. Complementary deoxyribonucleic acid cloning and enzymatic characterization of a novel 17β/3α-hydroxysteroid/retinoid short chain dehydrogenase/reductase. Endocrinology 1999;140:5275–84.
  • 7. Persson B, Krook M, Jörnvall H. Short-chain dehydrogenases/reductases. In: Enzymology and molecular biology of carbonyl metabolism 5. Volume 372 of the series Advances in experimental medicine and biology. New York: Springer, 1995:383–95.
  • 8. Kavanagh KL, Jörnvall H, Persson B, Oppermann U. Medium- and short-chain dehydrogenase/reductase gene and protein families. The SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 2008;65:3895–906.
  • 9. Jez JM, Bennett MJ, Schlegel BP, Lewis M, Penning TM. Comparative anatomy of the aldo-keto reductase superfamily. Biochem J 1997;326:625–36.
  • 10. Penning TM, Drury JE. Human aldo-keto reductases: function, gene regulation, and single nucleotide polymorphisms. Arch Biochem Biophys 2007;464:241–50.
  • 11. Jez JM, Flynn TG, Penning TM. A new nomenclature for the aldo-keto reductase superfamily. Biochem Pharmacol 1997;54:639–47.
  • 12. Schlegel BP, Jez JM, Penning TM. Mutagenesis of 3α-hydroxysteroid dehydrogenase reveals a “push-pull” mechanism for proton transfer in aldo-keto reductases. Biochemistry 1998;37:3538–48.
  • 13. Barski OA, Tipparaju SM, Bhatnagar A. The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 2008;40:553–624.
  • 14. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403–10.
  • 15. Madden TL, Tatusov RL, Zhang J. Applications of network BLAST server. Methods Enzymol 1996;266:131–41.
  • 16. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997;25:3389–402.
  • 17. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive-multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acids Res 1994;22:4673–80.
  • 18. Website: http://atama.wnb.uz.zgora.pl/∼jleluk/linki.html. Accessed 11 July, 2016.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3b12253-9b52-41f8-964f-635c9866321d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.