Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Fractional calculus considers derivatives and integrals of an arbitrary order. This article focuses on fractional parallel Scott-Blair model of viscoelastic biological materials, which is a generalization of classic Kelvin-Voight model to non-integer order derivatives suggested in the previous paper. The parallel Scott-Blair model admit the closed form of analytical solution in terms of two power functions multiplied by Debye type weight function. To build a parallel Scott-Blair model when only discrete-time measurements of the relaxation modulus are accessible for identification is a basic concern. Based on asymptotic models a two-stage approach is proposed for fitting the measurement data, which means that in the first stage the data are fitted by solving two dependent, but simple, linear least-squares problems in two separate time intervals. Next, at the second stage of the identification procedure the exact parallel Scott-Blair model optimal in the least-squares sense is computed. The log-transformed relaxation modulus data is used in the first stage of identification scheme, while the original relaxation modulus data is applied for the second stage identification. A complete identification procedure is presented. The usability of the method to find the parallel Scott-Blair fractional model of real biological material is demonstrated. The parameters of the parallel Scott-Blair model of a sample of sugar beet root, which very closely approximate the experimental relaxation modulus data, are given.
Czasopismo
Rocznik
Tom
Strony
87--96
Opis fizyczny
Bibliogr. 22 poz., rys., wz.
Twórcy
autor
- Department of Technology Fundamentals, University of Life Sciences in Lublin, Poland
Bibliografia
- 1. Bohdziewicz J. 2007. Modelowanie przebiegu odkształceń tkanek parenchymy warzyw w warunkach quasi-statycznych zmian obciążeń. Wyd. Uniwersytetu Przyrodniczego, Wrocław.
- 2. Bohdziewicz J., Czachor G. 2016. The rheological properties of redcurrant and highbush blueberry berries. Agricultural Engineering, Vol. 20, No. 2, 15-22.
- 3. Bohdziewicz J., Czachor G. Grzemski P. 2013. Anisotropy of mechanical properties of mushrooms (agaricus bisporus (j.e. lange) imbach). Agricultural Engineering, Vol. 4(148), No.2, 15-23.
- 4. Cai W., Chen W., Xu W. 2016. Characterizing the creep of viscoelastic materials by fractal derivative models. International Journal of Non-Linear Mechanics, Vol. 87, 58-63.
- 5. Christensen R. M. 2013. Theory of Viscoelasticity. Dover Publications, Mineola, New York.
- 6. Hernández-Jiménez A., Hernández-Santiago J., Macias-García A., Sánchez-González J., 2002. Relaxation modulus in PMMA and PTFE fitting by fractional Maxwell model. Polymer Testing, Vol. 21, 325–331.
- 7. Heymans N., Bauwens J.C. 1994. Fractal rheological models and fractional differential equations for viscoelastic behavior. Rheol. Acta, Vol. 33, 210-219.
- 8. Kaczorek T., Rogowski K. 2014. Fractional Linear Systems and Electrical Circuits. Printing House of Bialystok University of Technology, Białystok.
- 9. Machado J., Tenreiro V. K., Mainardi F. 2011. Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. Communications in Nonlinear Science and Numerical Simulation, Vol. 16, No. 3, 1140–1153.
- 10. Mainardi F., Spada G. 2011. Creep, relaxation and viscosity properties for basic fractional models in rheology. The European Physical Journal Special Topics. Vol. 193, No. 1, 133-160.
- 11. Rao M. A. 2014. Rheology of Fluid, Semisolid, and Solid Foods. Principles and Applications. Springer Science & Business Media, New York.
- 12. Schiessel H., Metzler R., Blumen A., Nonnejunacher T. F. 1995. Generalized viscoelastic models: their fractional equations with solutions. J. Phys. A: Math. Gen. Vol. 28, 6567-6584.
- 13. Scott Blair G. W. 1972. Rheology of foodstuffs, lecture to the technical university in Budapest. Periodica Polytechnica Chemical Engineering, Vol. 16, No. 1, 81-84.
- 14. Shapovalov Yu., Mandziy B., Bachyk D. 2013. Optimization of linear parametric circuits in the frequency domain. ECONTECHMOD, Vol. 2, No. 4, 73-77.
- 15. Stankiewicz A. 2007. Identification of the relaxation spectrum of viscoelastic plant materials. PhD Thesis, Agriculture University of Lublin, Lublin.
- 16. Stankiewicz A. 2012. Algorithm of relaxation modulus identification using stress measurements from the real test of relaxation. Inżynieria Rolnicza, Vol. 4(139), 389-400.
- 17. Stankiewicz A. 2012. On measurement pointindependent identification of Maxwell model of viscoelastic materials. TEKA Commission of Motorization and Energetics in Agriculture, Vol. 12, No. 22, 223-229.
- 18. Stankiewicz A. 2013. Selected methods and algorithms for the identification of models used in the rheology of biological materials. Tow. Wyd. Nauk. Libropolis, Lublin.
- 19. Stankiewicz A. 2018. Fractional Maxwell model of viscoelastic biological materials. Proc. Contemporary Research Trends in Agricultural Engineering, BIO Web Conf. Vol. 10, 2018, Article No. 02032, Pages: 8, DOI: https://doi.org/10.1051/bioconf/20181002032.
- 20. Starek A., Kusińska E. 2016. The variability of mechanical properties of the kohlrabi stalk parenchyma. ECONTECHMOD, Vol. 5. No. 3, 9-18.
- 21. Wagner C. E., Barbati A. C., Engmann J., Burbidge A. S., McKinley G. H. 2017. Quantifying the consistency and rheology of liquid foods using fractional calculus. Food Hydrocolloids Vol. 69, 242- 254.
- 22. Wcisło G. 2017. Determining the effect of the addition of bio-components AME on the rheological properties of biofuels. ECONTECHMOD, Vol. 6, No. 1, 105–110.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3b098d6-d142-47ce-8049-df33bf5ac036