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Abstract. Fractional calculus considers derivatives and 
integrals of an arbitrary order. This article focuses on 
fractional parallel Scott-Blair model of viscoelastic bio-
logical materials, which is a generalization of classic 
Kelvin-Voight model to non-integer order derivatives 
suggested in the previous paper. The parallel Scott-Blair 
model admit the closed form of analytical solution in 
terms of two power functions multiplied by Debye type 
weight function. To build a parallel Scott-Blair model 
when only discrete-time measurements of the relaxation 
modulus are accessible for identification is a basic con-
cern. Based on asymptotic models a two-stage approach is 
proposed for fitting the measurement data, which means 
that in the first stage the data are fitted by solving two 
dependent, but simple, linear least-squares problems in 
two separate time intervals. Next, at the second stage of 
the identification procedure the exact parallel Scott-Blair 
model optimal in the least-squares sense is computed. The 
log-transformed relaxation modulus data is used in the 
first stage of identification scheme, while the original 
relaxation modulus data is applied for the second stage 
identification. A complete identification procedure is 
presented. The usability of the method to find the parallel 
Scott-Blair fractional model of real biological material is 
demonstrated. The parameters of the parallel Scott-Blair 
model of a sample of sugar beet root, which very closely 
approximate the experimental relaxation modulus data, 
are given. 
Key words: fractional calculus, viscoelasticity, relaxation 
modulus, parallel Scott-Blair fractional model, model 
identification. 
 
 

INTRODUCTION 
 

Traditional methods to describe the viscoelastic mate-
rials include several spring and dashpot elements to model 
integer order differential equations in time domain. These 
classical derivatives can be extended including fractional 
order derivatives. For a few decades fractional calculus 

has encountered much success in the mathematical mod-
eling of complex dynamical systems. It has been proved, 
in particular, that fractional calculus constitutes a valuable 
mathematical tool to handle viscoelastic aspects of sys-
tems and materials mechanics [4,7,8,14]. Since both the 
Maxwell element and the Kelvin-Voigt element of Debye 
type decay do not fully characterize the true viscoelastic 
behavior of some materials, rheology theorists were early 
to realize the importance of incorporating fractional-
calculus techniques. The first papers which adopted and 
utilized fractional order dynamics go back to the 1970s 
[13], when elementary fractional Scott-Blair element was 
introduced. By replacing the springs and dashpots of the 
classical viscoelastic models with the Scott-Blair elemen-
tary fractional elements, several fractional models, includ-
ing the fractional Maxwell, fractional Voigt and fractional 
Kelvin models, have been proposed [6,10,12]. An over-
view of fractional viscoelastic models is presented in [9]. 
In the previous paper a parallel Scott-Blair model was 
suggested connecting in parallel two Scott-Blair models 
with additional multiplicative weight functions. The pro-
posed model takes into account the change of the rheolog-
ical properties of biological materials during the relaxa-
tion process. 

The aim of the paper is to develop a complete proce-
dure for the parallel Scott-Blair model identification 
based on discrete time relaxation modulus data from 
stress relaxation test. If the classic mean sum of squares is 
taken as a measure of the model  accuracy, the resulting 
task of fitting data to the model is a very difficult problem 
of nonlinear optimization, numerically difficult and often 
ill-conditioned both due to the exponential weight func-
tion and to the power-type elementary fractional compo-
nents. Here, to reduce these inconveniences this task is 
solved in two-stages. Based on the asymptotic properties 
of the parallel Scott-Blair model for small and large ar-
guments the approximate formulas are given, which state 
the basis for model identification. The approximate as-
ymptotic models are composed of only two parameters. 
By applying the logarithmic transformation of the power 
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2 A. STANKIEWICZ 
type asymptotic models and experimental data, the origi-
nal nonlinear identification tasks are reduced to linear 
least-squares problems. As a result, at the first stage two 
Scott-Blair models are determined by applying the linear 
least-squares for log transformed models and experi-
mental data in two separate time intervals. To develop the 
identification routine in the first stage we use the known 
result concerning the linear least-square method and we 
provide the expressions for the estimators of the optimal 
models parameters. In the second stage the optimal pa-
rameter of Debye decay type weight function is chosen in 
order to guarantee the best fit of experimental data. The 
original complete set of measurement data is used here. A 
complete algorithm is proposed for the parallel Scott-
Blair fractional model identification based on the discrete 
time stress relaxation experimental data.  

Research studies conducted during the past few dec-
ades have proved that viscoelastic models are also an 
important tool for studying the behavior of biological 
materials, which present a behavior that implies dissipa-
tion and storage of mechanical energy [11,13,19,21]: 
wood, fruits, vegetables, animal tissues, etc. The effec-
tiveness of the parallel Scott-Blair model and the identifi-
cation routine proposed is demonstrated for real biologi-
cal material and compared with the classical four parame-
ter Maxwell model approximation.  

 
 

PARALLEL SCOTT-BLAIR MODEL 
 

We consider a linear viscoelastic material subjected to 
small deformations and we restrict our attention to the 
one-axial case assuming that the viscoelastic material is 
quiescent for all times prior to starting instant, that we 
assume as 𝑡𝑡 = 0. In the previous paper a new viscoelastic 
model – parallel Scott-Blair model – was proposed as a 
weighted parallel connection (see Fig. 1b) of two Scott-
Blair elementary fractional elements (Fig. 1a) described 
by the fractional differential equations:  

 

 𝜎𝜎1(𝑡𝑡) = 𝐸𝐸𝜏𝜏𝛼𝛼 𝑑𝑑𝛼𝛼𝜀𝜀(𝑡𝑡)
𝑑𝑑𝑡𝑡𝛼𝛼 , 

 

 𝜎𝜎2(𝑡𝑡) = 𝐸𝐸𝜏𝜏𝛽𝛽 𝑑𝑑𝛽𝛽𝜀𝜀(𝑡𝑡)
𝑑𝑑𝑡𝑡𝛽𝛽 , 

 
such that, the linear time-dependent relaxation modulus 
𝐺𝐺(𝑡𝑡) is described by the function: 
 

 𝐺𝐺(𝑡𝑡) = 𝐸𝐸
𝛤𝛤(1−𝛽𝛽) (

𝑡𝑡
𝜏𝜏)

−𝛽𝛽
𝜑𝜑(𝑡𝑡) + 𝐸𝐸

𝛤𝛤(1−𝛼𝛼) (
𝑡𝑡
𝜏𝜏)

−𝛼𝛼
(1 − 𝜑𝜑(𝑡𝑡)). (1) 

 
The modulus 𝐺𝐺(𝑡𝑡) is the stress, which is induced in 

the viscoelastic material when the unit-step strain 𝜀𝜀(𝑡𝑡) is 
imposed. Here 𝜎𝜎1(𝑡𝑡) and 𝜎𝜎2(𝑡𝑡) denotes the stresses, 𝜀𝜀(𝑡𝑡) 

is the stain, 𝐸𝐸 and τ are the elastic modulus and relaxation 
time, 𝛼𝛼 and 𝛽𝛽 are non-integer positive order of fractional 

derivatives of the strain 𝜀𝜀(𝑡𝑡). Here, 𝑑𝑑
𝛽𝛽

𝑑𝑑𝑡𝑡𝛽𝛽 = 𝐷𝐷𝑡𝑡
𝛽𝛽 means the 

derivative operator in the sense of the Caputo’s fractional 
derivative of a function 𝑓𝑓(𝑥𝑥) of non-integer order 𝛽𝛽 with 
respect to variable 𝑡𝑡 and with starting point at 𝑡𝑡 = 0, 
which is defined by [8]: 
 

 𝐷𝐷𝑡𝑡
𝛽𝛽𝑓𝑓(𝑡𝑡) = 1

𝛤𝛤(𝑛𝑛−𝛽𝛽) ∫ (𝑡𝑡 − 1)𝑛𝑛−𝛽𝛽−1𝑡𝑡
0

𝑑𝑑𝑛𝑛

𝑑𝑑𝑡𝑡𝑛𝑛 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡, 
 
where 𝑛𝑛 − 1 < 𝛽𝛽 < 𝑛𝑛, and 𝛤𝛤(𝑥𝑥) is Euler’s gamma func-
tion defined by the integral: 
 
 𝛤𝛤(𝑥𝑥) = ∫ 𝑡𝑡𝑥𝑥−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑡𝑡∞

0 . (2) 
 
The exponential decay weight function is assumed: 
 
 𝜑𝜑(𝑡𝑡) = 𝑒𝑒−𝛾𝛾𝑡𝑡, (3) 
 
of exponential decay represented by the parameter 𝛾𝛾 > 0, 
thus the relaxation modulus (1) has the following exact 
form: 
 

 𝐺𝐺(𝑡𝑡) = 𝐸𝐸
𝛤𝛤(1−𝛽𝛽) (

𝑡𝑡
𝜏𝜏)

−𝛽𝛽
𝑒𝑒−𝛾𝛾𝑡𝑡 + 𝐸𝐸

𝛤𝛤(1−𝛼𝛼) (
𝑡𝑡
𝜏𝜏)

−𝛼𝛼
(1 − 𝑒𝑒−𝛾𝛾𝑡𝑡). (4) 

 
The model is composed by analogy to the classic Kel-

vin-Voight by the parallel arrangement of two fractional 
Scott-Blair elements (𝐸𝐸, 𝜏𝜏, 𝛼𝛼) and (𝐸𝐸, 𝜏𝜏, 𝛽𝛽), i.e. by replac-
ing the standard purely elastic spring and purely viscous 
dashpot of the classical Kelvin-Voight model by two 
Scott–Blair elements, with additional multiplicative ele-
ments of product operation represented by means of the 
weight function 𝜑𝜑(𝑡𝑡). In Fig. 1b the multiplication opera-
tions in (1) are symbolically marked by the product 
blocks in two parallel branches. Without any loss of gen-
erality we assume that 1 > α ≥ 0 and 1 > β ≥ 0. We also 
allow one, but not both, of the 𝛼𝛼 and 𝛽𝛽 values to be zero. 

Fig. 1. Fractional Scott-Blair element (a) followed by the 
parallel Scott-Blair fractional model (b) 

 

 

 

b 

(𝐸𝐸, 𝜏𝜏,𝛼𝛼) (𝐸𝐸, 𝜏𝜏,𝛽𝛽) 

      
𝜑𝜑(𝑡𝑡) 1 − 𝜑𝜑(𝑡𝑡) 

a 

 TWO-STAGE SCHEME FOR IDENTIFICATION OF PARALLEL SCOTT-BLAIR... 3 
ASYMPTOTIC APPROXIMATIONS 

 
In the interpretation of asymptotic behavior of the par-

allel Scott-Blair model a fundamental role is played by 
the asymptotic properties of the weight function 𝜑𝜑(𝑡𝑡) (3). 
Since for small 𝑡𝑡, in particular for 𝛾𝛾𝑡𝑡 ≅ 0, we have 
𝜑𝜑(𝑡𝑡) = 𝑒𝑒−𝛾𝛾𝛾𝛾 ≅ 1, whence 1 − 𝜑𝜑(𝑡𝑡) ≅ 0 and asymptotic 
approximation results: 

 

 𝐺𝐺(𝑡𝑡) ≅ 𝐺𝐺1(𝑡𝑡) = 𝐸𝐸
𝛤𝛤(1−𝛼𝛼) (𝛾𝛾

𝜏𝜏)
−𝛼𝛼

, (5) 

 
here ≅ means ‘approximately equal’. By the obvious 
asymptotic property 𝜑𝜑(𝑡𝑡) ≅ 0, which holds for 𝛾𝛾𝑡𝑡 → ∞, 
i.e. for large times, based on (4) we obtain the next as-
ymptotic approximation of the parallel Scott-Blair model 
in the form:  
 

 𝐺𝐺(𝑡𝑡) ≅ 𝐺𝐺2(𝑡𝑡) = 𝐸𝐸
𝛤𝛤(1−𝛽𝛽) (𝛾𝛾

𝜏𝜏)
−𝛽𝛽

. (6) 

 
Thus, both for short and for large times, relaxation 

modulus (4) decreases almost according to the time-
power elementary fractional element. The approximate 
models (5), (6) and the exact parallel Scott-Blair model 
are summarized in Fig. 2, where logarithmic scale is used 
both for relaxation modulus and time. Here, the asymptot-
ic models (5), (6), whose graph is a straight line are linear 
functions, which slope coefficients uniquely determine as 
the fractional derivatives orders – 𝛼𝛼 for small times and 𝛽𝛽 
for large times, respectively.  

Note, that both for small and for large times the frac-
tional Scott-Blair model is appropriate to describe the 
relaxation process, but the orders of the two models (5) 
and (6) are different. The authors, in particular 
Bohdziewicz [1-3], point out that during the relaxation 
process the mechanical properties of the biological mate-
rial changes. This is an interesting property of such mate-
rials. Thus the two models (5) and (6) with non-identical 
orders 𝛽𝛽 and 𝛼𝛼 are the mathematical meaning of such 
property. The Scott-Blair model 𝐺𝐺1(𝑡𝑡) takes into account 
small times, while 𝐺𝐺2(𝑡𝑡) model takes into account the 
long term response. The non-stationary character of the 
relaxation process is taken into account by an appropriate 
choice of parameter 𝛾𝛾.  

 
Fig. 2. Relaxation modulus of parallel Scott-Blair model 
and asymptotic Scott-Blair models for parameters: 
𝛼𝛼 = 0.5, 𝛽𝛽 = 0.85, 𝐸𝐸 = 1 [𝑃𝑃𝑃𝑃], 𝜏𝜏 = 2 [𝑠𝑠], 𝛾𝛾 = 0.9  
 
 

IDENTIFICATION 
 
By assumption, the exact mathematical description of 

the relaxation modulus 𝐺𝐺(𝑡𝑡) is completely unknown, but 
the value of 𝐺𝐺(𝑡𝑡) can be measured with a certain accuracy 
for any given value of the time 𝑡𝑡. A classical manner of 
studying viscoelasticity is by two-phase stress relaxation 
test, where the strain increases during the loading time 
interval until a predetermined strain 𝜀𝜀0 is reached at a 
given ramp-time, after which the strain 𝜀𝜀0 is maintained 
constant at that value [5,15,16]. 

Suppose a certain stress relaxation test performed on 
the specimen of the material under investigation resulted 
in a set of measurements of the relaxation modulus �̅�𝐺(𝑡𝑡𝑖𝑖) 
at the sampling instants 𝑡𝑡𝑖𝑖 > 0, 𝑖𝑖 = 1, … , 𝑁𝑁. For computa-
tional methods of relaxation modulus determination see, 
for example [15,16].  

In general, identification consists of the selecting, 
within the given class of models, of such a model, which 
ensures the best fit to the measurement results. Fitting 
data to the original parallel Scott-Blair model (4) is a 
nonlinear optimization problem, numerically difficult and 
often ill-conditioned mainly due to the exponential form 
of the weight function and power form of the Scott-Blair 
model responses, in which the unknown model parame-
ters 𝛼𝛼 and 𝛽𝛽 are in the exponent, but also due to the mul-
tiplicative form of (4) components.  

Here, a two-stage approach will be used, in which the 
linear least-squares identification routine will be applied 
to estimate parallel Scott-Blair model parameters based 
on the logarithmic transformation of the experimental 
data and equations (5), (6) which, respectively, yields: 

 
 𝑙𝑙𝑙𝑙𝑙𝑙 𝐺𝐺(𝑡𝑡) ≅ 𝑘𝑘1 − 𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡, 
 𝑙𝑙𝑙𝑙𝑙𝑙 𝐺𝐺(𝑡𝑡) ≅ 𝑘𝑘2 − 𝛽𝛽𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡, 
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G
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type asymptotic models and experimental data, the origi-
nal nonlinear identification tasks are reduced to linear 
least-squares problems. As a result, at the first stage two 
Scott-Blair models are determined by applying the linear 
least-squares for log transformed models and experi-
mental data in two separate time intervals. To develop the 
identification routine in the first stage we use the known 
result concerning the linear least-square method and we 
provide the expressions for the estimators of the optimal 
models parameters. In the second stage the optimal pa-
rameter of Debye decay type weight function is chosen in 
order to guarantee the best fit of experimental data. The 
original complete set of measurement data is used here. A 
complete algorithm is proposed for the parallel Scott-
Blair fractional model identification based on the discrete 
time stress relaxation experimental data.  

Research studies conducted during the past few dec-
ades have proved that viscoelastic models are also an 
important tool for studying the behavior of biological 
materials, which present a behavior that implies dissipa-
tion and storage of mechanical energy [11,13,19,21]: 
wood, fruits, vegetables, animal tissues, etc. The effec-
tiveness of the parallel Scott-Blair model and the identifi-
cation routine proposed is demonstrated for real biologi-
cal material and compared with the classical four parame-
ter Maxwell model approximation.  

 
 

PARALLEL SCOTT-BLAIR MODEL 
 

We consider a linear viscoelastic material subjected to 
small deformations and we restrict our attention to the 
one-axial case assuming that the viscoelastic material is 
quiescent for all times prior to starting instant, that we 
assume as 𝑡𝑡 = 0. In the previous paper a new viscoelastic 
model – parallel Scott-Blair model – was proposed as a 
weighted parallel connection (see Fig. 1b) of two Scott-
Blair elementary fractional elements (Fig. 1a) described 
by the fractional differential equations:  

 

 𝜎𝜎1(𝑡𝑡) = 𝐸𝐸𝜏𝜏𝛼𝛼 𝑑𝑑𝛼𝛼𝜀𝜀(𝑡𝑡)
𝑑𝑑𝑡𝑡𝛼𝛼 , 

 

 𝜎𝜎2(𝑡𝑡) = 𝐸𝐸𝜏𝜏𝛽𝛽 𝑑𝑑𝛽𝛽𝜀𝜀(𝑡𝑡)
𝑑𝑑𝑡𝑡𝛽𝛽 , 

 
such that, the linear time-dependent relaxation modulus 
𝐺𝐺(𝑡𝑡) is described by the function: 
 

 𝐺𝐺(𝑡𝑡) = 𝐸𝐸
𝛤𝛤(1−𝛽𝛽) (

𝑡𝑡
𝜏𝜏)

−𝛽𝛽
𝜑𝜑(𝑡𝑡) + 𝐸𝐸

𝛤𝛤(1−𝛼𝛼) (
𝑡𝑡
𝜏𝜏)

−𝛼𝛼
(1 − 𝜑𝜑(𝑡𝑡)). (1) 

 
The modulus 𝐺𝐺(𝑡𝑡) is the stress, which is induced in 

the viscoelastic material when the unit-step strain 𝜀𝜀(𝑡𝑡) is 
imposed. Here 𝜎𝜎1(𝑡𝑡) and 𝜎𝜎2(𝑡𝑡) denotes the stresses, 𝜀𝜀(𝑡𝑡) 

is the stain, 𝐸𝐸 and τ are the elastic modulus and relaxation 
time, 𝛼𝛼 and 𝛽𝛽 are non-integer positive order of fractional 

derivatives of the strain 𝜀𝜀(𝑡𝑡). Here, 𝑑𝑑
𝛽𝛽

𝑑𝑑𝑡𝑡𝛽𝛽 = 𝐷𝐷𝑡𝑡
𝛽𝛽 means the 

derivative operator in the sense of the Caputo’s fractional 
derivative of a function 𝑓𝑓(𝑥𝑥) of non-integer order 𝛽𝛽 with 
respect to variable 𝑡𝑡 and with starting point at 𝑡𝑡 = 0, 
which is defined by [8]: 
 

 𝐷𝐷𝑡𝑡
𝛽𝛽𝑓𝑓(𝑡𝑡) = 1

𝛤𝛤(𝑛𝑛−𝛽𝛽) ∫ (𝑡𝑡 − 1)𝑛𝑛−𝛽𝛽−1𝑡𝑡
0

𝑑𝑑𝑛𝑛

𝑑𝑑𝑡𝑡𝑛𝑛 𝑓𝑓(𝑡𝑡)𝑑𝑑𝑡𝑡, 
 
where 𝑛𝑛 − 1 < 𝛽𝛽 < 𝑛𝑛, and 𝛤𝛤(𝑥𝑥) is Euler’s gamma func-
tion defined by the integral: 
 
 𝛤𝛤(𝑥𝑥) = ∫ 𝑡𝑡𝑥𝑥−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑡𝑡∞

0 . (2) 
 
The exponential decay weight function is assumed: 
 
 𝜑𝜑(𝑡𝑡) = 𝑒𝑒−𝛾𝛾𝑡𝑡, (3) 
 
of exponential decay represented by the parameter 𝛾𝛾 > 0, 
thus the relaxation modulus (1) has the following exact 
form: 
 

 𝐺𝐺(𝑡𝑡) = 𝐸𝐸
𝛤𝛤(1−𝛽𝛽) (

𝑡𝑡
𝜏𝜏)

−𝛽𝛽
𝑒𝑒−𝛾𝛾𝑡𝑡 + 𝐸𝐸

𝛤𝛤(1−𝛼𝛼) (
𝑡𝑡
𝜏𝜏)

−𝛼𝛼
(1 − 𝑒𝑒−𝛾𝛾𝑡𝑡). (4) 

 
The model is composed by analogy to the classic Kel-

vin-Voight by the parallel arrangement of two fractional 
Scott-Blair elements (𝐸𝐸, 𝜏𝜏, 𝛼𝛼) and (𝐸𝐸, 𝜏𝜏, 𝛽𝛽), i.e. by replac-
ing the standard purely elastic spring and purely viscous 
dashpot of the classical Kelvin-Voight model by two 
Scott–Blair elements, with additional multiplicative ele-
ments of product operation represented by means of the 
weight function 𝜑𝜑(𝑡𝑡). In Fig. 1b the multiplication opera-
tions in (1) are symbolically marked by the product 
blocks in two parallel branches. Without any loss of gen-
erality we assume that 1 > α ≥ 0 and 1 > β ≥ 0. We also 
allow one, but not both, of the 𝛼𝛼 and 𝛽𝛽 values to be zero. 

Fig. 1. Fractional Scott-Blair element (a) followed by the 
parallel Scott-Blair fractional model (b) 

 

 

 

b 

(𝐸𝐸, 𝜏𝜏,𝛼𝛼) (𝐸𝐸, 𝜏𝜏,𝛽𝛽) 

      
𝜑𝜑(𝑡𝑡) 1 − 𝜑𝜑(𝑡𝑡) 
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ASYMPTOTIC APPROXIMATIONS 

 
In the interpretation of asymptotic behavior of the par-

allel Scott-Blair model a fundamental role is played by 
the asymptotic properties of the weight function 𝜑𝜑(𝑡𝑡) (3). 
Since for small 𝑡𝑡, in particular for 𝛾𝛾𝑡𝑡 ≅ 0, we have 
𝜑𝜑(𝑡𝑡) = 𝑒𝑒−𝛾𝛾𝛾𝛾 ≅ 1, whence 1 − 𝜑𝜑(𝑡𝑡) ≅ 0 and asymptotic 
approximation results: 

 

 𝐺𝐺(𝑡𝑡) ≅ 𝐺𝐺1(𝑡𝑡) = 𝐸𝐸
𝛤𝛤(1−𝛼𝛼) (𝛾𝛾

𝜏𝜏)
−𝛼𝛼

, (5) 

 
here ≅ means ‘approximately equal’. By the obvious 
asymptotic property 𝜑𝜑(𝑡𝑡) ≅ 0, which holds for 𝛾𝛾𝑡𝑡 → ∞, 
i.e. for large times, based on (4) we obtain the next as-
ymptotic approximation of the parallel Scott-Blair model 
in the form:  
 

 𝐺𝐺(𝑡𝑡) ≅ 𝐺𝐺2(𝑡𝑡) = 𝐸𝐸
𝛤𝛤(1−𝛽𝛽) (𝛾𝛾

𝜏𝜏)
−𝛽𝛽

. (6) 

 
Thus, both for short and for large times, relaxation 

modulus (4) decreases almost according to the time-
power elementary fractional element. The approximate 
models (5), (6) and the exact parallel Scott-Blair model 
are summarized in Fig. 2, where logarithmic scale is used 
both for relaxation modulus and time. Here, the asymptot-
ic models (5), (6), whose graph is a straight line are linear 
functions, which slope coefficients uniquely determine as 
the fractional derivatives orders – 𝛼𝛼 for small times and 𝛽𝛽 
for large times, respectively.  

Note, that both for small and for large times the frac-
tional Scott-Blair model is appropriate to describe the 
relaxation process, but the orders of the two models (5) 
and (6) are different. The authors, in particular 
Bohdziewicz [1-3], point out that during the relaxation 
process the mechanical properties of the biological mate-
rial changes. This is an interesting property of such mate-
rials. Thus the two models (5) and (6) with non-identical 
orders 𝛽𝛽 and 𝛼𝛼 are the mathematical meaning of such 
property. The Scott-Blair model 𝐺𝐺1(𝑡𝑡) takes into account 
small times, while 𝐺𝐺2(𝑡𝑡) model takes into account the 
long term response. The non-stationary character of the 
relaxation process is taken into account by an appropriate 
choice of parameter 𝛾𝛾.  

 
Fig. 2. Relaxation modulus of parallel Scott-Blair model 
and asymptotic Scott-Blair models for parameters: 
𝛼𝛼 = 0.5, 𝛽𝛽 = 0.85, 𝐸𝐸 = 1 [𝑃𝑃𝑃𝑃], 𝜏𝜏 = 2 [𝑠𝑠], 𝛾𝛾 = 0.9  
 
 

IDENTIFICATION 
 
By assumption, the exact mathematical description of 

the relaxation modulus 𝐺𝐺(𝑡𝑡) is completely unknown, but 
the value of 𝐺𝐺(𝑡𝑡) can be measured with a certain accuracy 
for any given value of the time 𝑡𝑡. A classical manner of 
studying viscoelasticity is by two-phase stress relaxation 
test, where the strain increases during the loading time 
interval until a predetermined strain 𝜀𝜀0 is reached at a 
given ramp-time, after which the strain 𝜀𝜀0 is maintained 
constant at that value [5,15,16]. 

Suppose a certain stress relaxation test performed on 
the specimen of the material under investigation resulted 
in a set of measurements of the relaxation modulus �̅�𝐺(𝑡𝑡𝑖𝑖) 
at the sampling instants 𝑡𝑡𝑖𝑖 > 0, 𝑖𝑖 = 1, … , 𝑁𝑁. For computa-
tional methods of relaxation modulus determination see, 
for example [15,16].  

In general, identification consists of the selecting, 
within the given class of models, of such a model, which 
ensures the best fit to the measurement results. Fitting 
data to the original parallel Scott-Blair model (4) is a 
nonlinear optimization problem, numerically difficult and 
often ill-conditioned mainly due to the exponential form 
of the weight function and power form of the Scott-Blair 
model responses, in which the unknown model parame-
ters 𝛼𝛼 and 𝛽𝛽 are in the exponent, but also due to the mul-
tiplicative form of (4) components.  

Here, a two-stage approach will be used, in which the 
linear least-squares identification routine will be applied 
to estimate parallel Scott-Blair model parameters based 
on the logarithmic transformation of the experimental 
data and equations (5), (6) which, respectively, yields: 

 
 𝑙𝑙𝑙𝑙𝑙𝑙 𝐺𝐺(𝑡𝑡) ≅ 𝑘𝑘1 − 𝛼𝛼𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡, 
 𝑙𝑙𝑙𝑙𝑙𝑙 𝐺𝐺(𝑡𝑡) ≅ 𝑘𝑘2 − 𝛽𝛽𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡, 
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4 A. STANKIEWICZ 
where: 

 𝑘𝑘1 = 𝑙𝑙𝑙𝑙𝑙𝑙 [ 𝐸𝐸𝜏𝜏𝛼𝛼

𝛤𝛤(1−𝛼𝛼)], (7) 

 

 𝑘𝑘2 = 𝑙𝑙𝑙𝑙𝑙𝑙 [ 𝐸𝐸𝜏𝜏𝛽𝛽

𝛤𝛤(1−𝛽𝛽)], (8) 

 
are introduced for brevity. Denoting 𝜒𝜒(𝑡𝑡) = 𝑙𝑙𝑙𝑙𝑙𝑙 𝐺𝐺(𝑡𝑡) and 
introducing the new independent variable 𝜗𝜗 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡, 
equivalent linear models are obtained (the sign ≅ is ne-
glected for simplicity): 
 
 𝜒𝜒(𝑡𝑡) = 𝑘𝑘1 − 𝛼𝛼𝜗𝜗, (9) 
 
 𝜒𝜒(𝑡𝑡) = 𝑘𝑘2 − 𝛽𝛽𝜗𝜗. (10) 

 
Now, in the set of experimental data {(�̅�𝐺(𝑡𝑡𝑖𝑖), 𝑡𝑡𝑖𝑖)}𝑖𝑖=1

𝑁𝑁  , 
or equivalently in the set {(𝜒𝜒𝑖𝑖, 𝜗𝜗𝑖𝑖)}𝑖𝑖=1

𝑁𝑁 , where: 
 

 𝜒𝜒𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙 �̅�𝐺(𝑡𝑡𝑖𝑖)  and  𝜗𝜗𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑖𝑖, (11) 
 
are log-transformed ‘measurement’ data, two separable 
subsets {(𝜒𝜒𝑖𝑖, 𝜗𝜗𝑖𝑖)}𝑖𝑖=1

𝑛𝑛1  and {(𝜒𝜒𝑖𝑖, 𝜗𝜗𝑖𝑖)}𝑖𝑖=𝑛𝑛2
𝑁𝑁  must be deter-

mined such that 𝑛𝑛1 < 𝑛𝑛2, probably 𝑛𝑛1 ≪ 𝑛𝑛2. The subsets 
𝒩𝒩1 = {1, … , 𝑛𝑛1} and 𝒩𝒩2 = {𝑛𝑛2, … , 𝑁𝑁} of respective indi-
ces are chosen during the recurrent identification scheme. 
It is clear that the union of the sets 𝒩𝒩1 ∪ 𝒩𝒩2 does not 
create the set 𝒩𝒩 = {1, … , 𝑁𝑁}. Now, classic linear least-
squares method can be applied to find optimal approxi-
mate models.  

As a measure of the model (9) accuracy the mean sum 
of squares is taken: 

 
 𝑄𝑄1(𝑘𝑘1, 𝛼𝛼, 𝑛𝑛1) = 1

𝑛𝑛1
∑ [𝜒𝜒𝑖𝑖 − 𝑘𝑘1 + 𝛼𝛼𝜗𝜗𝑖𝑖]2𝑛𝑛1

𝑖𝑖=1 , (12) 

 
the respective identification index for the second set of 
experimental data and log-linearized model (10) is: 
 
 𝑄𝑄2(𝑘𝑘2, 𝛽𝛽, 𝑛𝑛2) = 1

𝑁𝑁−𝑛𝑛2+1 ∑ [𝜒𝜒𝑖𝑖 − 𝑘𝑘2 + 𝛽𝛽𝜗𝜗𝑖𝑖]2𝑁𝑁
𝑖𝑖=𝑛𝑛2 . (13) 

 
Therefore, the least-squares identification of the log-
linearized models consists of determining the model pa-
rameters minimizing the indices (12), (13) by solving the 
following standard optimization problems: 
 
 𝑄𝑄1(�̂�𝑘1,𝑛𝑛1, �̂�𝛼𝑛𝑛1, 𝑛𝑛1) = 𝑚𝑚𝑚𝑚𝑛𝑛(𝑘𝑘1,𝛼𝛼)∈𝑅𝑅2 𝑄𝑄1(𝑘𝑘1, 𝛼𝛼, , 𝑛𝑛1), (14) 
 
 𝑄𝑄2(�̂�𝑘2,𝑛𝑛2, �̂�𝛽𝑛𝑛2, 𝑛𝑛2) = 𝑚𝑚𝑚𝑚𝑛𝑛(𝑘𝑘2,𝛽𝛽)∈𝑅𝑅2 𝑄𝑄2(𝑘𝑘2, 𝛽𝛽, 𝑛𝑛2). (15) 
 

Based on the well-known results concerning the linear 
least-squares problem solution, it can be shown that the 
solutions to (14), (15) tasks exist and are unique whenever 

the sampling instants are such that 0 < 𝑡𝑡1 < 𝑡𝑡2 < ⋯ <
𝑡𝑡𝑁𝑁. The model parameters optimal in the sense of (14) 
admit the closed form of analytical solution in terms of 
the log-transformed data (11) and they are given by the 
known formulas: 

 

 �̂�𝛼𝑛𝑛1 =
1

𝑛𝑛1
∑ 𝜒𝜒𝑖𝑖

𝑛𝑛1
𝑖𝑖=1 ∑ 𝜗𝜗𝑖𝑖

𝑛𝑛1
𝑖𝑖=1 −∑ 𝜒𝜒𝑖𝑖𝜗𝜗𝑖𝑖

𝑛𝑛1
𝑖𝑖=1

∑ [𝜗𝜗𝑖𝑖]2𝑛𝑛1
𝑖𝑖=1 − 1

𝑛𝑛1
[∑ 𝜗𝜗𝑖𝑖

𝑛𝑛1
𝑖𝑖=1 ]

2 , (16) 

 
 �̂�𝑘1,𝑛𝑛1 = 1

𝑛𝑛1
∑ 𝜒𝜒𝑖𝑖

𝑛𝑛1
𝑖𝑖=1 + 1

𝑛𝑛1
∑ 𝜗𝜗𝑖𝑖

𝑛𝑛1
𝑖𝑖=1 �̂�𝛼𝑛𝑛1. (17) 

 
The formulas for model (10) optimal parameters are anal-
ogous, i.e. they are given by:  
 

 �̂�𝛽𝑛𝑛2 = ∑ 𝜒𝜒𝑖𝑖
𝑁𝑁
𝑖𝑖=𝑛𝑛2 ∑ 𝜗𝜗𝑖𝑖

𝑁𝑁
𝑖𝑖=𝑛𝑛2 −(𝑁𝑁−𝑛𝑛2+1) ∑ 𝜒𝜒𝑖𝑖𝜗𝜗𝑖𝑖

𝑁𝑁
𝑖𝑖=𝑛𝑛2

(𝑁𝑁−𝑛𝑛2+1) ∑ 𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=𝑛𝑛2 −∑ 𝑥𝑥𝑖𝑖𝑁𝑁

𝑖𝑖=𝑛𝑛2 ∑ 𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=𝑛𝑛2

, (18) 

 
 �̂�𝑘2,𝑛𝑛2 = 1

𝑁𝑁−𝑛𝑛2+1 ∑ 𝜒𝜒𝑖𝑖
𝑁𝑁
𝑖𝑖=𝑛𝑛2 + 1

𝑁𝑁−𝑛𝑛2+1 �̂�𝛽𝑛𝑛2 ∑ 𝜗𝜗𝑖𝑖
𝑁𝑁
𝑖𝑖=𝑛𝑛2 . (19) 

 
According to definitions (7) and (8) the positivity con-

straint can be neglected for 𝑘𝑘1 and 𝑘𝑘2 in (14), (15) opti-
mization tasks. However, both 𝛼𝛼 as well as 𝛽𝛽 must be 
positive. Based on the Chebyshev equality the following 
result can be obtained; the proof is omitted here due to 
space limitations. 
Property 1. The optimal parameters �̂�𝛼𝑛𝑛1 and �̂�𝛽𝑛𝑛2  are 
positive, if and only if, the following conditions are valid: 
 

 ∑ ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 �̅�𝐺(𝑡𝑡𝑗𝑗)
�̅�𝐺(𝑡𝑡𝑖𝑖)

𝑛𝑛1
𝑗𝑗=𝑖𝑖+1

𝑛𝑛1
𝑖𝑖=1  𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑖𝑖

𝑡𝑡𝑗𝑗
> 0, 

 

 ∑ ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 �̅�𝐺(𝑡𝑡𝑗𝑗)
�̅�𝐺(𝑡𝑡𝑖𝑖)

𝑁𝑁
𝑗𝑗=𝑖𝑖+1

𝑁𝑁
𝑖𝑖=𝑛𝑛2  𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑖𝑖

𝑡𝑡𝑗𝑗
> 0, 

 
for tasks (14) and (15), respectively.  

Note, that the models (9) and (10) include two un-
known parameters (𝑘𝑘1, 𝛼𝛼) and (𝑘𝑘2, 𝛽𝛽). In view of (8) and 
(7) the above pairs of parameters are not independent. 
Therefore, from (8) and (7) for the optimal parameters we 
have:  

 

 �̂�𝜏𝑛𝑛1,𝑛𝑛2 = [𝛤𝛤(1−�̂�𝛽𝑛𝑛2)
𝛤𝛤(1−�̂�𝛼𝑛𝑛1) 10�̂�𝑘2,𝑛𝑛2−�̂�𝑘1,𝑛𝑛1 ]

1
�̂�𝛽𝑛𝑛2−�̂�𝛼𝑛𝑛1 , (20) 

 
which, in view of (8), next yields: 
 

 �̂�𝐸𝑛𝑛1,𝑛𝑛2 = 10�̂�𝑘2,𝑛𝑛2
𝛤𝛤(1−�̂�𝛽𝑛𝑛2)

𝜏𝜏�̂�𝛽𝑛𝑛2
.  (21) 

 
Of course, we can find the sum-square model errors 
𝑄𝑄1(𝑘𝑘1, 𝛼𝛼, 𝑛𝑛1) (12) and 𝑄𝑄2(𝑘𝑘2, 𝛽𝛽, 𝑛𝑛2) (13) over some finite 
time intervals, but what interval, i.e., what measurement 
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points, should we choose? To select an appropriate subset 
of measurement points we adopt the simple procedure 
based on the conditions 𝑒𝑒−𝛾𝛾𝛾𝛾 ≅ 1 and 𝑒𝑒−𝛾𝛾𝛾𝛾 ≅ 0, which 
implies the asymptotic approximations 𝐺𝐺1(𝑡𝑡) and 𝐺𝐺2(𝑡𝑡), 
respectively. Taking into account the course of the weight 
function 𝜑𝜑(𝑡𝑡) = 𝑒𝑒−𝛾𝛾𝛾𝛾 we assume the following condi-
tions: 
 
 𝑡𝑡𝑛𝑛1𝛾𝛾 ≤ 0.051293, (22) 
 
and 
 
 𝑡𝑡𝑛𝑛2𝛾𝛾 ≥ 2.995732, (23) 
 
to guarantee 𝜑𝜑(𝑡𝑡) ≥ 0.95 for any 𝑡𝑡 ≤ 𝑡𝑡𝑛𝑛1 and 𝜑𝜑(𝑡𝑡) ≤
0.05 for any 𝑡𝑡 ≥ 𝑡𝑡𝑛𝑛2 .  

Now the parameter 𝛾𝛾 of the weight function should be 
found. The search of the model parameter 𝛾𝛾 is based on 
the classic least-squares fitting of measurement data. In 
order to find optimal 𝛾𝛾 all the measurements 
{(�̅�𝐺(𝑡𝑡𝑖𝑖), 𝑡𝑡𝑖𝑖)}𝑖𝑖=1𝑁𝑁  will be used. The mean sum of squares 
related to the original model (4) is applied as measure of 
the model (4) accuracy:  

 
 𝑄𝑄(𝛾𝛾) = 1

𝑁𝑁∑ [�̅�𝐺(𝑡𝑡𝑖𝑖) − 𝐺𝐺(𝑡𝑡𝑖𝑖, 𝛾𝛾)]2𝑁𝑁
𝑖𝑖=1 , (24) 

 
where the notation 𝐺𝐺(𝑡𝑡𝑖𝑖, 𝛾𝛾) is introduced for the model 
𝐺𝐺(𝑡𝑡) in order to highlight the dependence of the model 
parameter 𝛾𝛾. The respective optimal identification task 
follows: 
 
 𝑄𝑄(𝛾𝛾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝛾𝛾>0 𝑄𝑄(𝛾𝛾). (25) 
 

Simple sufficient condition for the existence of the op-
timal parameter 𝛾𝛾 is given in the following result, the 
proof is omitted as before.  
Property 2. Assume that the relaxation modulus meas-
urements �̅�𝐺(𝑡𝑡𝑖𝑖) are bounded, 𝑚𝑚 = 1,2, … , 𝑁𝑁. If the follow-
ing conditions are satisfied: 
 
 ∑ [�̅�𝐺(𝑡𝑡𝑖𝑖) − 𝐺𝐺1(𝑡𝑡𝑖𝑖)]𝑁𝑁

𝑖𝑖=1 [𝐺𝐺1(𝑡𝑡𝑖𝑖) − 𝐺𝐺2(𝑡𝑡𝑖𝑖)]𝑡𝑡𝑖𝑖 < 0, (26) 
 
and 
 
 [�̅�𝐺(𝑡𝑡1) − 𝐺𝐺2(𝑡𝑡1)][𝐺𝐺1(𝑡𝑡1) − 𝐺𝐺2(𝑡𝑡1)]𝑡𝑡1 > 0,  (27) 
 
then there exists the solution to the optimal identification 
task (25). 

Note, that (26) and (27) are a posteriori conditions, 
since they cannot be checked, earlier than after the exper-
iment is performed. Note also, that since for 𝛾𝛾 < 0 the 
exponential functions 𝑒𝑒−𝛾𝛾𝛾𝛾𝑖𝑖  grow to infinity as 𝛾𝛾 → −∞, 

in result 𝑄𝑄(𝛾𝛾) → ∞, the constraint 𝛾𝛾 > 0 can be indeed 
omitted in (25) task. The numerical experiments showed 
that the function 𝑄𝑄(𝛾𝛾) usually has unique minimum. The 
exemplary course of 𝑄𝑄(𝛾𝛾) are plotted in Fig. 12 below.  

 
 

IDENTIFICATION SCHEME 
 

Taking into account the above, the calculation of the 
approximate values of parallel Scott-Blair model parame-
ters involves the following steps.  
1. Perform the stress relaxation test, record and store the 

relaxation modulus measurements �̅�𝐺(𝑡𝑡𝑖𝑖) correspond-
ing to the chosen sampling instants 𝑡𝑡𝑖𝑖 > 0, 𝑚𝑚 =
1, … , 𝑁𝑁. 

2. Determine the set {(𝜒𝜒𝑖𝑖, 𝜗𝜗𝑖𝑖)}𝑖𝑖=1𝑁𝑁  of log-transformed 
measurement data (11).  

3. Based on the course of log-log plot of the measure-
ment data, select in the set of measurements two sepa-
rable subsets choosing 𝑚𝑚1 and 𝑚𝑚2, 𝑚𝑚1 < 𝑚𝑚2.  

4. Compute the estimates (�̂�𝛼𝑛𝑛1, �̂�𝑘1,𝑛𝑛1) and (�̂�𝛽𝑛𝑛2, �̂�𝑘2,𝑛𝑛2) 
according to formulas (16)-(19).  

5. In order to ascertain if the models with parameters 
(�̂�𝛼𝑛𝑛1, �̂�𝑘1,𝑛𝑛1) and (�̂�𝛽𝑛𝑛2, �̂�𝑘2,𝑛𝑛2) are a satisfactory approx-
imation of measurement data in time intervals (0,𝑡𝑡𝑛𝑛1] 
and [𝑡𝑡𝑛𝑛2, 𝑡𝑡𝑁𝑁] compute the optimal identification indi-
ces and examine if 𝑄𝑄1(�̂�𝑘1,𝑛𝑛1, �̂�𝛼𝑛𝑛1, 𝑚𝑚1) ≤ 𝛿𝛿 and 
𝑄𝑄2(�̂�𝑘2,𝑛𝑛2, �̂�𝛽𝑛𝑛2, 𝑚𝑚2) ≤ 𝛿𝛿 for 𝛿𝛿, a preselected small posi-
tive error. If not, change 𝑚𝑚1 and/or 𝑚𝑚2 and go to Step 
4. Otherwise, go to Step 6.  

6. Compute the estimates of the relaxation time �̂�𝜏𝑛𝑛1,𝑛𝑛2  and 
elastic modulus �̂�𝐸𝑛𝑛1,𝑛𝑛2 using (20) and (21) formulas.  

7. Find weight function parameter 𝛾𝛾𝑛𝑛1,𝑛𝑛2 solving the 
second stage optimization task (25). 

8. In order to ascertain if the asymptotic Scott-Blair 
models (10), (12) with optimal parameters 
(�̂�𝐸𝑛𝑛1,𝑛𝑛2, �̂�𝜏𝑛𝑛1,𝑛𝑛2, �̂�𝛼𝑛𝑛1) and (�̂�𝐸𝑛𝑛1,𝑛𝑛2, �̂�𝜏𝑛𝑛1,𝑛𝑛2, �̂�𝛽𝑛𝑛2) are a sat-
isfactory approximation of the original parallel Scott-
Blair model examine if: 

 
 𝑡𝑡𝑛𝑛1𝛾𝛾𝑛𝑛1,𝑛𝑛2 ≤ 0.051293, (28) 
 
 𝑡𝑡𝑛𝑛2𝛾𝛾𝑛𝑛1,𝑛𝑛2 ≥ 2.995732. (29) 
 

If both the above conditions are satisfied, stop the pro-
cedure taking (�̂�𝐸𝑛𝑛1,𝑛𝑛2, �̂�𝜏𝑛𝑛1,𝑛𝑛2, �̂�𝛼𝑛𝑛1, �̂�𝛽𝑛𝑛2, 𝛾𝛾𝑛𝑛1,𝑛𝑛2) =
(�̂�𝐸, �̂�𝜏, �̂�𝛼, �̂�𝛽, 𝛾𝛾) as the parallel Scott-Blair model parame-
ters. If not, change 𝑚𝑚1 and/or 𝑚𝑚2 and repeat Steps 4-8. 

Figure 3 illustrates this procedure. The stopping rules 
from Step 5 guarantee the good quality of the log-
linearized models in the chosen time intervals and corre-
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where: 

 𝑘𝑘1 = 𝑙𝑙𝑙𝑙𝑙𝑙 [ 𝐸𝐸𝜏𝜏𝛼𝛼

𝛤𝛤(1−𝛼𝛼)], (7) 

 

 𝑘𝑘2 = 𝑙𝑙𝑙𝑙𝑙𝑙 [ 𝐸𝐸𝜏𝜏𝛽𝛽

𝛤𝛤(1−𝛽𝛽)], (8) 

 
are introduced for brevity. Denoting 𝜒𝜒(𝑡𝑡) = 𝑙𝑙𝑙𝑙𝑙𝑙 𝐺𝐺(𝑡𝑡) and 
introducing the new independent variable 𝜗𝜗 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡, 
equivalent linear models are obtained (the sign ≅ is ne-
glected for simplicity): 
 
 𝜒𝜒(𝑡𝑡) = 𝑘𝑘1 − 𝛼𝛼𝜗𝜗, (9) 
 
 𝜒𝜒(𝑡𝑡) = 𝑘𝑘2 − 𝛽𝛽𝜗𝜗. (10) 

 
Now, in the set of experimental data {(�̅�𝐺(𝑡𝑡𝑖𝑖), 𝑡𝑡𝑖𝑖)}𝑖𝑖=1

𝑁𝑁  , 
or equivalently in the set {(𝜒𝜒𝑖𝑖, 𝜗𝜗𝑖𝑖)}𝑖𝑖=1

𝑁𝑁 , where: 
 

 𝜒𝜒𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙 �̅�𝐺(𝑡𝑡𝑖𝑖)  and  𝜗𝜗𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑖𝑖, (11) 
 
are log-transformed ‘measurement’ data, two separable 
subsets {(𝜒𝜒𝑖𝑖, 𝜗𝜗𝑖𝑖)}𝑖𝑖=1

𝑛𝑛1  and {(𝜒𝜒𝑖𝑖, 𝜗𝜗𝑖𝑖)}𝑖𝑖=𝑛𝑛2
𝑁𝑁  must be deter-

mined such that 𝑛𝑛1 < 𝑛𝑛2, probably 𝑛𝑛1 ≪ 𝑛𝑛2. The subsets 
𝒩𝒩1 = {1, … , 𝑛𝑛1} and 𝒩𝒩2 = {𝑛𝑛2, … , 𝑁𝑁} of respective indi-
ces are chosen during the recurrent identification scheme. 
It is clear that the union of the sets 𝒩𝒩1 ∪ 𝒩𝒩2 does not 
create the set 𝒩𝒩 = {1, … , 𝑁𝑁}. Now, classic linear least-
squares method can be applied to find optimal approxi-
mate models.  

As a measure of the model (9) accuracy the mean sum 
of squares is taken: 

 
 𝑄𝑄1(𝑘𝑘1, 𝛼𝛼, 𝑛𝑛1) = 1

𝑛𝑛1
∑ [𝜒𝜒𝑖𝑖 − 𝑘𝑘1 + 𝛼𝛼𝜗𝜗𝑖𝑖]2𝑛𝑛1

𝑖𝑖=1 , (12) 

 
the respective identification index for the second set of 
experimental data and log-linearized model (10) is: 
 
 𝑄𝑄2(𝑘𝑘2, 𝛽𝛽, 𝑛𝑛2) = 1

𝑁𝑁−𝑛𝑛2+1 ∑ [𝜒𝜒𝑖𝑖 − 𝑘𝑘2 + 𝛽𝛽𝜗𝜗𝑖𝑖]2𝑁𝑁
𝑖𝑖=𝑛𝑛2 . (13) 

 
Therefore, the least-squares identification of the log-
linearized models consists of determining the model pa-
rameters minimizing the indices (12), (13) by solving the 
following standard optimization problems: 
 
 𝑄𝑄1(�̂�𝑘1,𝑛𝑛1, �̂�𝛼𝑛𝑛1, 𝑛𝑛1) = 𝑚𝑚𝑚𝑚𝑛𝑛(𝑘𝑘1,𝛼𝛼)∈𝑅𝑅2 𝑄𝑄1(𝑘𝑘1, 𝛼𝛼, , 𝑛𝑛1), (14) 
 
 𝑄𝑄2(�̂�𝑘2,𝑛𝑛2, �̂�𝛽𝑛𝑛2, 𝑛𝑛2) = 𝑚𝑚𝑚𝑚𝑛𝑛(𝑘𝑘2,𝛽𝛽)∈𝑅𝑅2 𝑄𝑄2(𝑘𝑘2, 𝛽𝛽, 𝑛𝑛2). (15) 
 

Based on the well-known results concerning the linear 
least-squares problem solution, it can be shown that the 
solutions to (14), (15) tasks exist and are unique whenever 

the sampling instants are such that 0 < 𝑡𝑡1 < 𝑡𝑡2 < ⋯ <
𝑡𝑡𝑁𝑁. The model parameters optimal in the sense of (14) 
admit the closed form of analytical solution in terms of 
the log-transformed data (11) and they are given by the 
known formulas: 

 

 �̂�𝛼𝑛𝑛1 =
1

𝑛𝑛1
∑ 𝜒𝜒𝑖𝑖

𝑛𝑛1
𝑖𝑖=1 ∑ 𝜗𝜗𝑖𝑖

𝑛𝑛1
𝑖𝑖=1 −∑ 𝜒𝜒𝑖𝑖𝜗𝜗𝑖𝑖

𝑛𝑛1
𝑖𝑖=1

∑ [𝜗𝜗𝑖𝑖]2𝑛𝑛1
𝑖𝑖=1 − 1

𝑛𝑛1
[∑ 𝜗𝜗𝑖𝑖

𝑛𝑛1
𝑖𝑖=1 ]

2 , (16) 

 
 �̂�𝑘1,𝑛𝑛1 = 1

𝑛𝑛1
∑ 𝜒𝜒𝑖𝑖

𝑛𝑛1
𝑖𝑖=1 + 1

𝑛𝑛1
∑ 𝜗𝜗𝑖𝑖

𝑛𝑛1
𝑖𝑖=1 �̂�𝛼𝑛𝑛1. (17) 

 
The formulas for model (10) optimal parameters are anal-
ogous, i.e. they are given by:  
 

 �̂�𝛽𝑛𝑛2 = ∑ 𝜒𝜒𝑖𝑖
𝑁𝑁
𝑖𝑖=𝑛𝑛2 ∑ 𝜗𝜗𝑖𝑖

𝑁𝑁
𝑖𝑖=𝑛𝑛2 −(𝑁𝑁−𝑛𝑛2+1) ∑ 𝜒𝜒𝑖𝑖𝜗𝜗𝑖𝑖

𝑁𝑁
𝑖𝑖=𝑛𝑛2

(𝑁𝑁−𝑛𝑛2+1) ∑ 𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=𝑛𝑛2 −∑ 𝑥𝑥𝑖𝑖𝑁𝑁

𝑖𝑖=𝑛𝑛2 ∑ 𝑥𝑥𝑖𝑖𝑁𝑁
𝑖𝑖=𝑛𝑛2

, (18) 

 
 �̂�𝑘2,𝑛𝑛2 = 1

𝑁𝑁−𝑛𝑛2+1 ∑ 𝜒𝜒𝑖𝑖
𝑁𝑁
𝑖𝑖=𝑛𝑛2 + 1

𝑁𝑁−𝑛𝑛2+1 �̂�𝛽𝑛𝑛2 ∑ 𝜗𝜗𝑖𝑖
𝑁𝑁
𝑖𝑖=𝑛𝑛2 . (19) 

 
According to definitions (7) and (8) the positivity con-

straint can be neglected for 𝑘𝑘1 and 𝑘𝑘2 in (14), (15) opti-
mization tasks. However, both 𝛼𝛼 as well as 𝛽𝛽 must be 
positive. Based on the Chebyshev equality the following 
result can be obtained; the proof is omitted here due to 
space limitations. 
Property 1. The optimal parameters �̂�𝛼𝑛𝑛1 and �̂�𝛽𝑛𝑛2  are 
positive, if and only if, the following conditions are valid: 
 

 ∑ ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 �̅�𝐺(𝑡𝑡𝑗𝑗)
�̅�𝐺(𝑡𝑡𝑖𝑖)

𝑛𝑛1
𝑗𝑗=𝑖𝑖+1

𝑛𝑛1
𝑖𝑖=1  𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑖𝑖

𝑡𝑡𝑗𝑗
> 0, 

 

 ∑ ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 �̅�𝐺(𝑡𝑡𝑗𝑗)
�̅�𝐺(𝑡𝑡𝑖𝑖)

𝑁𝑁
𝑗𝑗=𝑖𝑖+1

𝑁𝑁
𝑖𝑖=𝑛𝑛2  𝑙𝑙𝑙𝑙𝑙𝑙 𝑡𝑡𝑖𝑖

𝑡𝑡𝑗𝑗
> 0, 

 
for tasks (14) and (15), respectively.  

Note, that the models (9) and (10) include two un-
known parameters (𝑘𝑘1, 𝛼𝛼) and (𝑘𝑘2, 𝛽𝛽). In view of (8) and 
(7) the above pairs of parameters are not independent. 
Therefore, from (8) and (7) for the optimal parameters we 
have:  

 

 �̂�𝜏𝑛𝑛1,𝑛𝑛2 = [𝛤𝛤(1−�̂�𝛽𝑛𝑛2)
𝛤𝛤(1−�̂�𝛼𝑛𝑛1) 10�̂�𝑘2,𝑛𝑛2−�̂�𝑘1,𝑛𝑛1 ]

1
�̂�𝛽𝑛𝑛2−�̂�𝛼𝑛𝑛1 , (20) 

 
which, in view of (8), next yields: 
 

 �̂�𝐸𝑛𝑛1,𝑛𝑛2 = 10�̂�𝑘2,𝑛𝑛2
𝛤𝛤(1−�̂�𝛽𝑛𝑛2)

𝜏𝜏�̂�𝛽𝑛𝑛2
.  (21) 

 
Of course, we can find the sum-square model errors 
𝑄𝑄1(𝑘𝑘1, 𝛼𝛼, 𝑛𝑛1) (12) and 𝑄𝑄2(𝑘𝑘2, 𝛽𝛽, 𝑛𝑛2) (13) over some finite 
time intervals, but what interval, i.e., what measurement 
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points, should we choose? To select an appropriate subset 
of measurement points we adopt the simple procedure 
based on the conditions 𝑒𝑒−𝛾𝛾𝛾𝛾 ≅ 1 and 𝑒𝑒−𝛾𝛾𝛾𝛾 ≅ 0, which 
implies the asymptotic approximations 𝐺𝐺1(𝑡𝑡) and 𝐺𝐺2(𝑡𝑡), 
respectively. Taking into account the course of the weight 
function 𝜑𝜑(𝑡𝑡) = 𝑒𝑒−𝛾𝛾𝛾𝛾 we assume the following condi-
tions: 
 
 𝑡𝑡𝑛𝑛1𝛾𝛾 ≤ 0.051293, (22) 
 
and 
 
 𝑡𝑡𝑛𝑛2𝛾𝛾 ≥ 2.995732, (23) 
 
to guarantee 𝜑𝜑(𝑡𝑡) ≥ 0.95 for any 𝑡𝑡 ≤ 𝑡𝑡𝑛𝑛1 and 𝜑𝜑(𝑡𝑡) ≤
0.05 for any 𝑡𝑡 ≥ 𝑡𝑡𝑛𝑛2 .  

Now the parameter 𝛾𝛾 of the weight function should be 
found. The search of the model parameter 𝛾𝛾 is based on 
the classic least-squares fitting of measurement data. In 
order to find optimal 𝛾𝛾 all the measurements 
{(�̅�𝐺(𝑡𝑡𝑖𝑖), 𝑡𝑡𝑖𝑖)}𝑖𝑖=1𝑁𝑁  will be used. The mean sum of squares 
related to the original model (4) is applied as measure of 
the model (4) accuracy:  

 
 𝑄𝑄(𝛾𝛾) = 1

𝑁𝑁∑ [�̅�𝐺(𝑡𝑡𝑖𝑖) − 𝐺𝐺(𝑡𝑡𝑖𝑖, 𝛾𝛾)]2𝑁𝑁
𝑖𝑖=1 , (24) 

 
where the notation 𝐺𝐺(𝑡𝑡𝑖𝑖, 𝛾𝛾) is introduced for the model 
𝐺𝐺(𝑡𝑡) in order to highlight the dependence of the model 
parameter 𝛾𝛾. The respective optimal identification task 
follows: 
 
 𝑄𝑄(𝛾𝛾) = 𝑚𝑚𝑚𝑚𝑚𝑚𝛾𝛾>0 𝑄𝑄(𝛾𝛾). (25) 
 

Simple sufficient condition for the existence of the op-
timal parameter 𝛾𝛾 is given in the following result, the 
proof is omitted as before.  
Property 2. Assume that the relaxation modulus meas-
urements �̅�𝐺(𝑡𝑡𝑖𝑖) are bounded, 𝑚𝑚 = 1,2, … , 𝑁𝑁. If the follow-
ing conditions are satisfied: 
 
 ∑ [�̅�𝐺(𝑡𝑡𝑖𝑖) − 𝐺𝐺1(𝑡𝑡𝑖𝑖)]𝑁𝑁

𝑖𝑖=1 [𝐺𝐺1(𝑡𝑡𝑖𝑖) − 𝐺𝐺2(𝑡𝑡𝑖𝑖)]𝑡𝑡𝑖𝑖 < 0, (26) 
 
and 
 
 [�̅�𝐺(𝑡𝑡1) − 𝐺𝐺2(𝑡𝑡1)][𝐺𝐺1(𝑡𝑡1) − 𝐺𝐺2(𝑡𝑡1)]𝑡𝑡1 > 0,  (27) 
 
then there exists the solution to the optimal identification 
task (25). 

Note, that (26) and (27) are a posteriori conditions, 
since they cannot be checked, earlier than after the exper-
iment is performed. Note also, that since for 𝛾𝛾 < 0 the 
exponential functions 𝑒𝑒−𝛾𝛾𝛾𝛾𝑖𝑖  grow to infinity as 𝛾𝛾 → −∞, 

in result 𝑄𝑄(𝛾𝛾) → ∞, the constraint 𝛾𝛾 > 0 can be indeed 
omitted in (25) task. The numerical experiments showed 
that the function 𝑄𝑄(𝛾𝛾) usually has unique minimum. The 
exemplary course of 𝑄𝑄(𝛾𝛾) are plotted in Fig. 12 below.  

 
 

IDENTIFICATION SCHEME 
 

Taking into account the above, the calculation of the 
approximate values of parallel Scott-Blair model parame-
ters involves the following steps.  
1. Perform the stress relaxation test, record and store the 

relaxation modulus measurements �̅�𝐺(𝑡𝑡𝑖𝑖) correspond-
ing to the chosen sampling instants 𝑡𝑡𝑖𝑖 > 0, 𝑚𝑚 =
1, … , 𝑁𝑁. 

2. Determine the set {(𝜒𝜒𝑖𝑖, 𝜗𝜗𝑖𝑖)}𝑖𝑖=1𝑁𝑁  of log-transformed 
measurement data (11).  

3. Based on the course of log-log plot of the measure-
ment data, select in the set of measurements two sepa-
rable subsets choosing 𝑚𝑚1 and 𝑚𝑚2, 𝑚𝑚1 < 𝑚𝑚2.  

4. Compute the estimates (�̂�𝛼𝑛𝑛1, �̂�𝑘1,𝑛𝑛1) and (�̂�𝛽𝑛𝑛2, �̂�𝑘2,𝑛𝑛2) 
according to formulas (16)-(19).  

5. In order to ascertain if the models with parameters 
(�̂�𝛼𝑛𝑛1, �̂�𝑘1,𝑛𝑛1) and (�̂�𝛽𝑛𝑛2, �̂�𝑘2,𝑛𝑛2) are a satisfactory approx-
imation of measurement data in time intervals (0,𝑡𝑡𝑛𝑛1] 
and [𝑡𝑡𝑛𝑛2, 𝑡𝑡𝑁𝑁] compute the optimal identification indi-
ces and examine if 𝑄𝑄1(�̂�𝑘1,𝑛𝑛1, �̂�𝛼𝑛𝑛1, 𝑚𝑚1) ≤ 𝛿𝛿 and 
𝑄𝑄2(�̂�𝑘2,𝑛𝑛2, �̂�𝛽𝑛𝑛2, 𝑚𝑚2) ≤ 𝛿𝛿 for 𝛿𝛿, a preselected small posi-
tive error. If not, change 𝑚𝑚1 and/or 𝑚𝑚2 and go to Step 
4. Otherwise, go to Step 6.  

6. Compute the estimates of the relaxation time �̂�𝜏𝑛𝑛1,𝑛𝑛2  and 
elastic modulus �̂�𝐸𝑛𝑛1,𝑛𝑛2 using (20) and (21) formulas.  

7. Find weight function parameter 𝛾𝛾𝑛𝑛1,𝑛𝑛2 solving the 
second stage optimization task (25). 

8. In order to ascertain if the asymptotic Scott-Blair 
models (10), (12) with optimal parameters 
(�̂�𝐸𝑛𝑛1,𝑛𝑛2, �̂�𝜏𝑛𝑛1,𝑛𝑛2, �̂�𝛼𝑛𝑛1) and (�̂�𝐸𝑛𝑛1,𝑛𝑛2, �̂�𝜏𝑛𝑛1,𝑛𝑛2, �̂�𝛽𝑛𝑛2) are a sat-
isfactory approximation of the original parallel Scott-
Blair model examine if: 

 
 𝑡𝑡𝑛𝑛1𝛾𝛾𝑛𝑛1,𝑛𝑛2 ≤ 0.051293, (28) 
 
 𝑡𝑡𝑛𝑛2𝛾𝛾𝑛𝑛1,𝑛𝑛2 ≥ 2.995732. (29) 
 

If both the above conditions are satisfied, stop the pro-
cedure taking (�̂�𝐸𝑛𝑛1,𝑛𝑛2, �̂�𝜏𝑛𝑛1,𝑛𝑛2, �̂�𝛼𝑛𝑛1, �̂�𝛽𝑛𝑛2, 𝛾𝛾𝑛𝑛1,𝑛𝑛2) =
(�̂�𝐸, �̂�𝜏, �̂�𝛼, �̂�𝛽, 𝛾𝛾) as the parallel Scott-Blair model parame-
ters. If not, change 𝑚𝑚1 and/or 𝑚𝑚2 and repeat Steps 4-8. 

Figure 3 illustrates this procedure. The stopping rules 
from Step 5 guarantee the good quality of the log-
linearized models in the chosen time intervals and corre-
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spond with those commonly used in the optimal identifi-
cation techniques. The conditions (28), (29) are imposed 
to guarantee the applicability of Scott-Blair models (10), 
(12) to approximate the original parallel Scott-Blair mod-
el. Both the pairs of conditions must be satisfied simulta-
neously in order to guarantee good quality of the resulted 
model. While �̂�𝛼𝑛𝑛1 and �̂�𝛽𝑛𝑛2  are determined independently 
in appropriate time intervals, the relaxation time �̂�𝜏𝑛𝑛1,𝑛𝑛2  
and the modulus �̂�𝐸𝑛𝑛1,𝑛𝑛2  depend on the identification re-
sults in both time intervals, simultaneously. Note also, 
that (28) and (29) are a posteriori conditions, since the 
applicability of the identification procedure cannot be 
checked, earlier than after the experiment and the compu-
tations are performed.  

The next example shows, how the identification 
scheme can be used for identification of parallel Scott-
Blair model of real material. 
 
 
PARALLEL SCOTT-BLAIR MODEL FOR A SAMPLE 

OF SUGAR BEET ROOT 
 

In this section we find the parallel Scott-Blair models de-
scribing mechanical properties of the root of sugar beet Janus 
variety and compare them to the optimal classic four-

parameter Maxwell models. Cylindrical samples of 20 mm 
diameter and height were obtained from the root of sugar 
beet [15,17,18]. During the two-phase stress relaxation test, 
in the first initial phase the strain was imposed instantaneous-
ly, the sample was preconditioned at the 1.5 𝑚𝑚 · 𝑠𝑠−1 strain 
rate to the maximum strain for sample numbered as 3. Next, 
during the second phase at constant strain the corresponding 
time-varying force induced in the specimen was recorded 
during the time period (0,100) seconds in 𝑁𝑁 = 1160 meas-
urement points. The experiment was performed in the state 
of uniaxial deformation; i.e. the specimen examined under-
went deformation in steel cylinder (for details see, for exam-
ple, [15]). The modeling of mechanical properties of this 
material in linear-viscoelastic regime is justified by the re-
search results presented in a lot of works, for example 
[1,15,18]. For the initial filtering of the stress measurement 
data the Savitzky-Golay method was used. Next, the respec-
tive relaxation modulus measurements were computed using 
fast trapezoidal method of approximate relaxation modulus 
identification presented in [16]. The proposed identification 
scheme is implemented in Matlab code. The Matlab standard 
function fminbnd is used for numerical implementation of 
the second stage optimization task. 

Based on the log-log plot of the experiment results for 
exemplary sample 3 (see Fig. 5), the time intervals deter-

Identification of  
Scott-Blair model 𝐺𝐺1(𝑡𝑡) 

(�̂�𝐸𝑛𝑛1,𝑛𝑛2, �̂�𝜏𝑛𝑛1,𝑛𝑛2, �̂�𝛼𝑛𝑛1, �̂�𝛽𝑛𝑛2) 

Find �̂�𝛾 solving the  
optimization task (25) 

Stress relaxation 
test 

Log transformation of 
measurement data 

{(𝜒𝜒𝑖𝑖 ,𝜗𝜗𝑖𝑖)}𝑖𝑖=𝑛𝑛2
𝑁𝑁  

{𝑡𝑡𝑖𝑖 , �̅�𝐺(𝑡𝑡𝑖𝑖)} 

(�̂�𝐸, �̂�𝜏, �̂�𝛼, �̂�𝛽, �̂�𝛾) 

Fractional parallel Scott-Blair 
model with parameters: 

 

{(𝜒𝜒𝑖𝑖 ,𝜗𝜗𝑖𝑖)}𝑖𝑖=1
𝑛𝑛1  First  

identification stage 

Identification of  
Scott-Blair model 𝐺𝐺2(𝑡𝑡) 

Compute �̂�𝜏𝑛𝑛1,𝑛𝑛2  
and �̂�𝐸𝑛𝑛1,𝑛𝑛2 

(�̂�𝛽𝑛𝑛2, �̂�𝑘2,𝑛𝑛2) (�̂�𝑘1,𝑛𝑛1, �̂�𝛼𝑛𝑛1) 

{𝑡𝑡𝑖𝑖 , �̅�𝐺(𝑡𝑡𝑖𝑖)} 

Second  
identification stage 

Fig. 3. Two-stage two-interval scheme for parallel Scott-Blair model identification 

 TWO-STAGE SCHEME FOR IDENTIFICATION OF PARALLEL SCOTT-BLAIR... 7 
mined by 𝑡𝑡𝑛𝑛1 = 0.008 [𝑠𝑠] and 𝑡𝑡𝑛𝑛2 = 10 [𝑠𝑠] were chosen 
as well as the estimates of Scott-Blair models parameters, 
and next the estimates of the relaxation time and elastic 
modulus were computed. Next, the optimal parameter 
𝛾𝛾𝑛𝑛1,𝑛𝑛2 was found in the second stage computations, and 
the resulting parallel Scott-Blair model (4) was obtained. 
The inaccurate fit of the model 𝐺𝐺(𝑡𝑡) (4) to the experi-
mental data is illustrated in Fig. 4. The relaxation modu-
lus of the classic four-parameter optimal in the least-
square sense Maxwell model: 

 
 𝐺𝐺𝑀𝑀(𝑡𝑡) = 𝐸𝐸1𝑒𝑒−𝑣𝑣1𝑡𝑡 + 𝐸𝐸2𝑒𝑒−𝑣𝑣2𝑡𝑡, (30) 
 
where: 𝐸𝐸1 = 10.9552 [𝑀𝑀𝑀𝑀𝑀𝑀], 𝐸𝐸2 = 2.43487 [𝑀𝑀𝑀𝑀𝑀𝑀] and 
𝑣𝑣1 = 0.001156 [𝑠𝑠−1], 𝑣𝑣2 = 3.59744 [𝑠𝑠−1] represent the 
elastic modulus and relaxation frequencies, respectively, are 
also depicted in Fig. 4. This does not accord with observation 
of real relaxation stress experiment, so the Maxwell model is 
inappropriate for their description. Here, the quality of Max-
well and parallel Scott-Blair models are comparable. The 
results are also summarized in the first raw of Table 1, where 
the model parameters, the times 𝑡𝑡𝑛𝑛1, 𝑡𝑡𝑛𝑛2 and the factors 
𝑡𝑡𝑛𝑛1𝛾𝛾𝑛𝑛1,𝑛𝑛2 and 𝑡𝑡𝑛𝑛2𝛾𝛾𝑛𝑛1,𝑛𝑛2 are given. Also, the value of the 
empirical mean square model error:  
 
 𝐸𝐸𝐸𝐸𝐸𝐸 = 1

𝑁𝑁 ∑ [�̅�𝐺(𝑡𝑡𝑖𝑖) − 𝐺𝐺(𝑡𝑡𝑖𝑖)]2𝑁𝑁
𝑖𝑖=1 = 𝑄𝑄(𝛾𝛾𝑛𝑛1,𝑛𝑛2) 

 
is included in this table. The model errors are not big (see 
Table 1), but from Fig. 4 it can be seen that the accuracy of 
the approximation is insufficient, especially in small times 
region.  
 

 
Fig. 4. The inaccurate fit of the parallel Scott-Blair model 
to experimental data; number of time internals 𝑁𝑁𝑁𝑁 = 1  
 

 
Fig. 5. The log-log plot of elementary Scott-Blair approx-
imate models 𝐺𝐺1(𝑡𝑡) and 𝐺𝐺2(𝑡𝑡) for small and large times, 
respectively; 𝑁𝑁𝑁𝑁 = 1  
 

Note, that while the applicability condition (29) for 
large times is satisfied (the good fit of model 𝐺𝐺2(𝑡𝑡) for 
large times is confirmed both in Figure 4 and 5), the sec-
ond applicability condition (28) is not satisfied for the 
first attempt (𝑁𝑁𝑁𝑁 = 1) to choose the appropriate time 
interval (0,𝑡𝑡𝑛𝑛1]. Thus, 𝑡𝑡𝑛𝑛1 = 0.06 [𝑠𝑠] is assumed, which 
results in the substantial decrease of the 𝛾𝛾𝑛𝑛1,𝑛𝑛2 parameter 
and yields two-fold decrease in value of the factor 
𝑡𝑡𝑛𝑛1𝛾𝛾𝑛𝑛1,𝑛𝑛2 and sevenfold decrease in model error 𝐸𝐸𝐸𝐸𝐸𝐸 
value. The courses of relaxation modulus (4) and (30) are 
plotted in Fig. 6, the respective approximate models 𝐺𝐺1(𝑡𝑡) 
and 𝐺𝐺2(𝑡𝑡) are depicted in Fig. 7, the model parameters are 
given in Table 1 (𝑁𝑁𝑁𝑁 = 2), as above. 

 

 
Fig. 6. The time course of parallel Scott-Blair and Max-
well models and the experimental data; 𝑁𝑁𝑁𝑁 = 2  
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Table 1. The results of the parallel Scott-Blair model identification; Nr – number of time internals chosen in numerical 
identification procedure 

𝑁𝑁𝑁𝑁 𝑡𝑡𝑛𝑛1[𝑠𝑠] 𝑡𝑡𝑛𝑛2[𝑠𝑠] �̂�𝛼𝑛𝑛2 �̂�𝛽𝑛𝑛1 �̂�𝜏𝑛𝑛1,𝑛𝑛2 [𝑠𝑠] �̂�𝐸𝑛𝑛1,𝑛𝑛2 [𝑀𝑀𝑀𝑀𝑀𝑀] 𝛾𝛾𝑛𝑛1,𝑛𝑛2 𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑛𝑛1𝛾𝛾𝑛𝑛1,𝑛𝑛2 𝑡𝑡𝑛𝑛2𝛾𝛾𝑛𝑛1,𝑛𝑛2

1 0.008 10 0.2267 0.0432 0.0106 15.1650 20.4612 0,141844 0.164 204.612 
2 0.06 10 0.0680 0.0432 0.0025 16.1561 1.3367 0,020822 0.080202 13.367 
3 0.1 10 0.0548 0.0432 1.538e-4 18.212 0.3548 0,011202 0.03548 3.548 
4 0.5 10 0.0493 0.0432 9.928e-7 22.6480 0.2402 0,011529 0.1201 2.402 
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spond with those commonly used in the optimal identifi-
cation techniques. The conditions (28), (29) are imposed 
to guarantee the applicability of Scott-Blair models (10), 
(12) to approximate the original parallel Scott-Blair mod-
el. Both the pairs of conditions must be satisfied simulta-
neously in order to guarantee good quality of the resulted 
model. While �̂�𝛼𝑛𝑛1 and �̂�𝛽𝑛𝑛2  are determined independently 
in appropriate time intervals, the relaxation time �̂�𝜏𝑛𝑛1,𝑛𝑛2  
and the modulus �̂�𝐸𝑛𝑛1,𝑛𝑛2  depend on the identification re-
sults in both time intervals, simultaneously. Note also, 
that (28) and (29) are a posteriori conditions, since the 
applicability of the identification procedure cannot be 
checked, earlier than after the experiment and the compu-
tations are performed.  

The next example shows, how the identification 
scheme can be used for identification of parallel Scott-
Blair model of real material. 
 
 
PARALLEL SCOTT-BLAIR MODEL FOR A SAMPLE 

OF SUGAR BEET ROOT 
 

In this section we find the parallel Scott-Blair models de-
scribing mechanical properties of the root of sugar beet Janus 
variety and compare them to the optimal classic four-

parameter Maxwell models. Cylindrical samples of 20 mm 
diameter and height were obtained from the root of sugar 
beet [15,17,18]. During the two-phase stress relaxation test, 
in the first initial phase the strain was imposed instantaneous-
ly, the sample was preconditioned at the 1.5 𝑚𝑚 · 𝑠𝑠−1 strain 
rate to the maximum strain for sample numbered as 3. Next, 
during the second phase at constant strain the corresponding 
time-varying force induced in the specimen was recorded 
during the time period (0,100) seconds in 𝑁𝑁 = 1160 meas-
urement points. The experiment was performed in the state 
of uniaxial deformation; i.e. the specimen examined under-
went deformation in steel cylinder (for details see, for exam-
ple, [15]). The modeling of mechanical properties of this 
material in linear-viscoelastic regime is justified by the re-
search results presented in a lot of works, for example 
[1,15,18]. For the initial filtering of the stress measurement 
data the Savitzky-Golay method was used. Next, the respec-
tive relaxation modulus measurements were computed using 
fast trapezoidal method of approximate relaxation modulus 
identification presented in [16]. The proposed identification 
scheme is implemented in Matlab code. The Matlab standard 
function fminbnd is used for numerical implementation of 
the second stage optimization task. 

Based on the log-log plot of the experiment results for 
exemplary sample 3 (see Fig. 5), the time intervals deter-

Identification of  
Scott-Blair model 𝐺𝐺1(𝑡𝑡) 

(�̂�𝐸𝑛𝑛1,𝑛𝑛2, �̂�𝜏𝑛𝑛1,𝑛𝑛2, �̂�𝛼𝑛𝑛1, �̂�𝛽𝑛𝑛2) 

Find �̂�𝛾 solving the  
optimization task (25) 

Stress relaxation 
test 

Log transformation of 
measurement data 

{(𝜒𝜒𝑖𝑖 ,𝜗𝜗𝑖𝑖)}𝑖𝑖=𝑛𝑛2
𝑁𝑁  

{𝑡𝑡𝑖𝑖 , �̅�𝐺(𝑡𝑡𝑖𝑖)} 

(�̂�𝐸, �̂�𝜏, �̂�𝛼, �̂�𝛽, �̂�𝛾) 

Fractional parallel Scott-Blair 
model with parameters: 

 

{(𝜒𝜒𝑖𝑖 ,𝜗𝜗𝑖𝑖)}𝑖𝑖=1
𝑛𝑛1  First  

identification stage 

Identification of  
Scott-Blair model 𝐺𝐺2(𝑡𝑡) 

Compute �̂�𝜏𝑛𝑛1,𝑛𝑛2  
and �̂�𝐸𝑛𝑛1,𝑛𝑛2 

(�̂�𝛽𝑛𝑛2, �̂�𝑘2,𝑛𝑛2) (�̂�𝑘1,𝑛𝑛1, �̂�𝛼𝑛𝑛1) 

{𝑡𝑡𝑖𝑖 , �̅�𝐺(𝑡𝑡𝑖𝑖)} 

Second  
identification stage 

Fig. 3. Two-stage two-interval scheme for parallel Scott-Blair model identification 

 TWO-STAGE SCHEME FOR IDENTIFICATION OF PARALLEL SCOTT-BLAIR... 7 
mined by 𝑡𝑡𝑛𝑛1 = 0.008 [𝑠𝑠] and 𝑡𝑡𝑛𝑛2 = 10 [𝑠𝑠] were chosen 
as well as the estimates of Scott-Blair models parameters, 
and next the estimates of the relaxation time and elastic 
modulus were computed. Next, the optimal parameter 
𝛾𝛾𝑛𝑛1,𝑛𝑛2 was found in the second stage computations, and 
the resulting parallel Scott-Blair model (4) was obtained. 
The inaccurate fit of the model 𝐺𝐺(𝑡𝑡) (4) to the experi-
mental data is illustrated in Fig. 4. The relaxation modu-
lus of the classic four-parameter optimal in the least-
square sense Maxwell model: 

 
 𝐺𝐺𝑀𝑀(𝑡𝑡) = 𝐸𝐸1𝑒𝑒−𝑣𝑣1𝑡𝑡 + 𝐸𝐸2𝑒𝑒−𝑣𝑣2𝑡𝑡, (30) 
 
where: 𝐸𝐸1 = 10.9552 [𝑀𝑀𝑀𝑀𝑀𝑀], 𝐸𝐸2 = 2.43487 [𝑀𝑀𝑀𝑀𝑀𝑀] and 
𝑣𝑣1 = 0.001156 [𝑠𝑠−1], 𝑣𝑣2 = 3.59744 [𝑠𝑠−1] represent the 
elastic modulus and relaxation frequencies, respectively, are 
also depicted in Fig. 4. This does not accord with observation 
of real relaxation stress experiment, so the Maxwell model is 
inappropriate for their description. Here, the quality of Max-
well and parallel Scott-Blair models are comparable. The 
results are also summarized in the first raw of Table 1, where 
the model parameters, the times 𝑡𝑡𝑛𝑛1, 𝑡𝑡𝑛𝑛2 and the factors 
𝑡𝑡𝑛𝑛1𝛾𝛾𝑛𝑛1,𝑛𝑛2 and 𝑡𝑡𝑛𝑛2𝛾𝛾𝑛𝑛1,𝑛𝑛2 are given. Also, the value of the 
empirical mean square model error:  
 
 𝐸𝐸𝐸𝐸𝐸𝐸 = 1

𝑁𝑁 ∑ [�̅�𝐺(𝑡𝑡𝑖𝑖) − 𝐺𝐺(𝑡𝑡𝑖𝑖)]2𝑁𝑁
𝑖𝑖=1 = 𝑄𝑄(𝛾𝛾𝑛𝑛1,𝑛𝑛2) 

 
is included in this table. The model errors are not big (see 
Table 1), but from Fig. 4 it can be seen that the accuracy of 
the approximation is insufficient, especially in small times 
region.  
 

 
Fig. 4. The inaccurate fit of the parallel Scott-Blair model 
to experimental data; number of time internals 𝑁𝑁𝑁𝑁 = 1  
 

 
Fig. 5. The log-log plot of elementary Scott-Blair approx-
imate models 𝐺𝐺1(𝑡𝑡) and 𝐺𝐺2(𝑡𝑡) for small and large times, 
respectively; 𝑁𝑁𝑁𝑁 = 1  
 

Note, that while the applicability condition (29) for 
large times is satisfied (the good fit of model 𝐺𝐺2(𝑡𝑡) for 
large times is confirmed both in Figure 4 and 5), the sec-
ond applicability condition (28) is not satisfied for the 
first attempt (𝑁𝑁𝑁𝑁 = 1) to choose the appropriate time 
interval (0,𝑡𝑡𝑛𝑛1]. Thus, 𝑡𝑡𝑛𝑛1 = 0.06 [𝑠𝑠] is assumed, which 
results in the substantial decrease of the 𝛾𝛾𝑛𝑛1,𝑛𝑛2 parameter 
and yields two-fold decrease in value of the factor 
𝑡𝑡𝑛𝑛1𝛾𝛾𝑛𝑛1,𝑛𝑛2 and sevenfold decrease in model error 𝐸𝐸𝐸𝐸𝐸𝐸 
value. The courses of relaxation modulus (4) and (30) are 
plotted in Fig. 6, the respective approximate models 𝐺𝐺1(𝑡𝑡) 
and 𝐺𝐺2(𝑡𝑡) are depicted in Fig. 7, the model parameters are 
given in Table 1 (𝑁𝑁𝑁𝑁 = 2), as above. 

 

 
Fig. 6. The time course of parallel Scott-Blair and Max-
well models and the experimental data; 𝑁𝑁𝑁𝑁 = 2  
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Table 1. The results of the parallel Scott-Blair model identification; Nr – number of time internals chosen in numerical 
identification procedure 

𝑁𝑁𝑁𝑁 𝑡𝑡𝑛𝑛1[𝑠𝑠] 𝑡𝑡𝑛𝑛2[𝑠𝑠] �̂�𝛼𝑛𝑛2 �̂�𝛽𝑛𝑛1 �̂�𝜏𝑛𝑛1,𝑛𝑛2 [𝑠𝑠] �̂�𝐸𝑛𝑛1,𝑛𝑛2 [𝑀𝑀𝑀𝑀𝑀𝑀] 𝛾𝛾𝑛𝑛1,𝑛𝑛2 𝐸𝐸𝐸𝐸𝐸𝐸 𝑡𝑡𝑛𝑛1𝛾𝛾𝑛𝑛1,𝑛𝑛2 𝑡𝑡𝑛𝑛2𝛾𝛾𝑛𝑛1,𝑛𝑛2

1 0.008 10 0.2267 0.0432 0.0106 15.1650 20.4612 0,141844 0.164 204.612 
2 0.06 10 0.0680 0.0432 0.0025 16.1561 1.3367 0,020822 0.080202 13.367 
3 0.1 10 0.0548 0.0432 1.538e-4 18.212 0.3548 0,011202 0.03548 3.548 
4 0.5 10 0.0493 0.0432 9.928e-7 22.6480 0.2402 0,011529 0.1201 2.402 
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Fig. 7. The log-log plot of elementary Scott-Blair approx-
imate models 𝐺𝐺1(𝑡𝑡) and 𝐺𝐺2(𝑡𝑡); 𝑁𝑁𝑁𝑁 = 2 
 

 
Fig. 8. The time course of the parallel Scott-Blair and 
Maxwell models and the experimental data; 𝑁𝑁𝑁𝑁 = 3  
 

This abrupt character of the behavior of parallel Scott-
Blair model from Fig. 6 for small times motivated us to 
reinvestigate the initial time interval to (0,1] with the 
condition 𝑒𝑒𝑡𝑡𝑛𝑛1�̂�𝛾𝑛𝑛1,𝑛𝑛2 ≅ 0 in mind. As a result, the model 
depicted in Fig. 8 was obtained. The respective model and 
identification process data are summarized for 𝑁𝑁𝑁𝑁 = 3 in 
Table 1. Now, both conditions (28) and (29) of the as-
ymptotic models applicability are satisfied. For 𝑁𝑁𝑁𝑁 = 3 
choice of the first time interval, essentially better fit to the 
measurement data is obtained (see also the respective 
value of the model error 𝐸𝐸𝐸𝐸𝐸𝐸 in Table 1), but the model 
𝐺𝐺(𝑡𝑡) is still not monotonically decreasing (see Fig 8). 
Thus 𝑡𝑡𝑛𝑛1 = 0.5 [𝑠𝑠] is taken in next step 𝑁𝑁𝑁𝑁 = 4 and the 
parallel Scott-Blair model plotted in Fig. 10 is deter-
mined. 

 
Fig. 9. The log-log plot of Scott-Blair approximate mod-
els 𝐺𝐺1(𝑡𝑡) and 𝐺𝐺2(𝑡𝑡); 𝑁𝑁𝑁𝑁 = 3 
 

 
Fig. 10. The time course of parallel Scott-Blair and Max-
well models and the experimental data; 𝑁𝑁𝑁𝑁 = 4 
 

 
Fig. 11. The log-log plot of Scott-Blair approximate mod-
els 𝐺𝐺1(𝑡𝑡) and 𝐺𝐺2(𝑡𝑡); 𝑁𝑁𝑁𝑁 = 4 
 

Note, that the drawing from Fig. 10 indicates almost 
perfect model fit to experimental data. In Fig. 12 two ex-
emplary courses of the index 𝑄𝑄(𝛾𝛾) (24) are demonstrated.  
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Fig. 12. Two-stage identification index 𝑄𝑄(𝛾𝛾) (24) as a 
function of 𝛾𝛾  
 
 

FINAL REMARKS 
 

This paper shows, that the Parallel Scott-Blair model 
can be fully determined in two stages using only the 
standard least-squares and log-linearized least-squares 
techniques. It is also shown herein that the fractional 
parallel Scott-Blair model can be used to describe the 
viscoelastic mechanical properties of biological materials.  

Mathematical modeling of biological materials is cru-
cial for the design of various applications in the agricul-
ture and food industry [11,18,20,22]. This paper is geared 
towards the applications of fractional order models in the 
rheology of biological materials. As such, viscoelastic 
model design should not be restricted to narrow integer-
order derivatives domain.  
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Fig. 7. The log-log plot of elementary Scott-Blair approx-
imate models 𝐺𝐺1(𝑡𝑡) and 𝐺𝐺2(𝑡𝑡); 𝑁𝑁𝑁𝑁 = 2 
 

 
Fig. 8. The time course of the parallel Scott-Blair and 
Maxwell models and the experimental data; 𝑁𝑁𝑁𝑁 = 3  
 

This abrupt character of the behavior of parallel Scott-
Blair model from Fig. 6 for small times motivated us to 
reinvestigate the initial time interval to (0,1] with the 
condition 𝑒𝑒𝑡𝑡𝑛𝑛1�̂�𝛾𝑛𝑛1,𝑛𝑛2 ≅ 0 in mind. As a result, the model 
depicted in Fig. 8 was obtained. The respective model and 
identification process data are summarized for 𝑁𝑁𝑁𝑁 = 3 in 
Table 1. Now, both conditions (28) and (29) of the as-
ymptotic models applicability are satisfied. For 𝑁𝑁𝑁𝑁 = 3 
choice of the first time interval, essentially better fit to the 
measurement data is obtained (see also the respective 
value of the model error 𝐸𝐸𝐸𝐸𝐸𝐸 in Table 1), but the model 
𝐺𝐺(𝑡𝑡) is still not monotonically decreasing (see Fig 8). 
Thus 𝑡𝑡𝑛𝑛1 = 0.5 [𝑠𝑠] is taken in next step 𝑁𝑁𝑁𝑁 = 4 and the 
parallel Scott-Blair model plotted in Fig. 10 is deter-
mined. 

 
Fig. 9. The log-log plot of Scott-Blair approximate mod-
els 𝐺𝐺1(𝑡𝑡) and 𝐺𝐺2(𝑡𝑡); 𝑁𝑁𝑁𝑁 = 3 
 

 
Fig. 10. The time course of parallel Scott-Blair and Max-
well models and the experimental data; 𝑁𝑁𝑁𝑁 = 4 
 

 
Fig. 11. The log-log plot of Scott-Blair approximate mod-
els 𝐺𝐺1(𝑡𝑡) and 𝐺𝐺2(𝑡𝑡); 𝑁𝑁𝑁𝑁 = 4 
 

Note, that the drawing from Fig. 10 indicates almost 
perfect model fit to experimental data. In Fig. 12 two ex-
emplary courses of the index 𝑄𝑄(𝛾𝛾) (24) are demonstrated.  
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Fig. 12. Two-stage identification index 𝑄𝑄(𝛾𝛾) (24) as a 
function of 𝛾𝛾  
 
 

FINAL REMARKS 
 

This paper shows, that the Parallel Scott-Blair model 
can be fully determined in two stages using only the 
standard least-squares and log-linearized least-squares 
techniques. It is also shown herein that the fractional 
parallel Scott-Blair model can be used to describe the 
viscoelastic mechanical properties of biological materials.  

Mathematical modeling of biological materials is cru-
cial for the design of various applications in the agricul-
ture and food industry [11,18,20,22]. This paper is geared 
towards the applications of fractional order models in the 
rheology of biological materials. As such, viscoelastic 
model design should not be restricted to narrow integer-
order derivatives domain.  
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Abstract. The paper describes two optimization problems 
for minimization of the consumption of the stretch foil 
(film) used for wrapping bales to impart bale stability. 
The first problem consists in the optimal design of foil 
width. The foil consumption per unit of the bale volume 
index is used as a measure of foil expenditure. In the 
second problem a fixed volume of the bale silage must be 
optimally wrapped by stretch foil and the optimal bale 
dimensions (diameter, height) are sought out. Mechanical 
properties of the sealing foil characterized by its Poisson 
ratio are taken into account. The paper presents optimal 
and suboptimal solutions to both the problems. The 
formulas for computing optimal and near-optimal foil 
width and bale size dimensions are given and estimations 
of the solution errors are discussed. Simulation results are 
presented and analyzed for exemplary bale silage.  
Key words: baled silage, cylindrical bale, mathematical 
model, stretch foil consumption, optimization. 
 
 

INTRODUCTION 
 

One approach to storing agricultural materials such as 
hay, silage, forage crops, is to package the material in large 
cylindrical bales. Since its origin in the 1950s the subject of 
baled silage technique has grown into an area with 
applications in several branches of agriculture, the number 
of academics working and patents in the area has increased 
over the years. A comprehensive review of the studies of 
bale silage conservation of agricultural materials technique 
can be found in [1,4,14], and for further research see 
[5,10,18]. For highlights of progress in silage conservation 
and future perspectives see, e.g., [21].  

The quality of silage in the form of cylindrical and 
prismatic bales depends, among others, on the efficiency of 
its protection against the penetration of air and impact of 
other external factors [18]. Studies concerning the usage of 
plastic foil to bale wrapping, especially the seal integrity 
and storage quality depending on different features have 
been carried out since 1990s, e.g., [1,2,4,6,8,12,20]. 
Financial expenditures on the purchase of stretch foil 

constitute a high percentage in the total costs of this 
technology of silage production [2,15,18]. Although the 
study of foil usage has been extensive, with conceptual 
bases supported by empirical data, there are still only a few 
papers concerning the mathematical description of the foil 
wrapping process [19,22] and the foil consumption aspects 
[6,7,11,13,17,18]. The effect of bale size dimensions and 
the number of foil layers as well as the value of the overlap 
of the adjacent strips of the foil on the foil consumption has 
been taken into account for round and square bales in 
[7,11]. In our previous papers [17,18] the mathematical 
model that is aimed at an estimation of the foil 
consumption is developed. A direct analytical formula to 
compute the final number of wrappings necessary to 
guarantee the required number of foil layers under the 
assumed standard of wrapping as a function of initial width 
of foil, its Poisson's ratio and unit deformation of the foil, 
bale diameter and the overlap ratio was given, 
mathematically supported and analysed in detail [17,18]. In 
result, the mathematical model for exact estimation of the 
foil consumption for cylindrical bale silages has been 
derived [18], which serves as a basis for the optimization. 

The aim of this study was to find such foil width and 
bale dimensions for which the consumption of the foil 
used for wrapping the bale is minimal. To solve these 
questions, two optimization problems were stated and 
solved. The optimal foil and bale dimensions were 
discussed and the problems of suboptimal bale and foil 
design were covered. The examples of the optimal and 
suboptimal choice of foil and the bale size parameters 
were given. The considerations were confined to the 
widely practiced method of individual wrapping of 
separate cylindrical bales [4,14], for illustration see Fig. 1 
in [18].  

 
 

MATHEMATICAL MODEL  
 

Here is the mathematical model derived and described 
in detail in [17,18], that is useful for optimization of the 
foil consumption.  
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