PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabrication and characterization of Zr microplasma sprayed coatings for medical applications

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents new results of studying the influence of parameters of microplasma spraying (MPS) of Zr wire on the structure of Zr coatings. The coating experiments were accomplished in a two level fractional factorial design. Individual particles of sprayed Zr wire and their splats on the substrate were collected under various spraying parameters (amperage, spraying distance, plasma gas flow rate and wire flow rate) and evaluated by Scanning Electron Microscopy (SEM) to establish the effect of particle size and shape on the coating microstructure. The particles were characterized by measurement of their sizes and the obtained results were evaluated in terms of their degree of melting. This was compared with the experimentally observed coating microstructure type and finally correlated to the investigated coating porosity to select the specific MPS parameters of Zr coatings depositing onto medical implants from Ti alloy. It was found that the main parameters influencing the size of the sprayed Zr particles and the porosity of the Zr coatings are the plasma gas flow rate and amperage. It was demonstrated that it is possible to control the porosity of Zr microplasma coatings in the range from 2.8% to 20.3% by changing the parameters of the MPS. The parameters of microplasma spraying of Zr wire were established to obtain medical implant coatings with porosity up to 20.3% and pore size up to 300 μm.
Rocznik
Strony
93--105
Opis fizyczny
Bibliogr. 35 poz., tab., wykr., il.
Twórcy
  • E.O. Paton Electric Welding Institute, Ukraine
  • D. Serikbayev East Kazakhstan Technical University, Ust-Kamenogorsk, Kazakhstan
  • E.O. Paton Electric Welding Institute, Ukraine
  • E.O. Paton Electric Welding Institute, Ukraine
  • D. Serikbayev East Kazakhstan Technical University, Ust-Kamenogorsk, Kazakhstan
  • D. Serikbayev East Kazakhstan Technical University, Ust-Kamenogorsk, Kazakhstan
  • D. Serikbayev East Kazakhstan Technical University, Ust-Kamenogorsk, Kazakhstan
Bibliografia
  • 1. Cizek J., Matejicek J.: Medicine Meets Thermal Spray Technology: A Review of Patents. J Therm Spray Tech 27(8) (2018) 1251–1279.
  • 2. Matassi F., Botti A., Sirleo L., Carulli C., Innocenti M.: Porous metal for orthopedics implants Clin. Cases Miner. Bone Metab. 10(2) (2013) 111-115 PMID: 24133527.
  • 3. Civantos A., Dominguez C., Pino R.J., Setti G., Pavon J.J., Martinez-Campos E., Garcia F.J.G., Rodriguez J.A., Allain J.P., Torres Y.: Designing bioactive porous titanium interfaces to balance mechanical properties and in vitro cells behavior towards increased osseointegration. Surf Coat Technol 368 (2019) 162–174.
  • 4. Liu W., Liu S., Wang L.: Surface Modification of Biomedical Titanium Alloy: Micromorphology, Microstructure Evolution and Biomedical Applications. Coatings 9 (2019) 249.
  • 5. Sola A., Belluci D., Cannillo V.: Functionally graded materials for orthopedic applications—an update on design and manufacturing. Biotechnol Adv 34 (2016) 504–531.
  • 6. Ke D., Vu A.A., Bandyopadhyay A., Bose S.: Compositionally graded doped hydroxyapatite coating on titanium using laser and plasma spray deposition for bone implants. Acta Biomater 84 (2019) 414–423.
  • 7. Łatka L, Pawłowski L, Winnicki M, Sokołowski P, Małachowska A, Kozerski S.: Review of Functionally Graded Thermal Sprayed Coatings. Applied Sciences 10(15) (2020) 5153.
  • 8. Tumilovich M.V., Savich V.V., Shelukhina A.I.: [The effect of particle shape and size on the osseointegration of porous titanium powder implants]. Doklady BGUIR 7(101) (2016) 115 – 119. In Russian.
  • 9. Kalita V.I., Mamaev A.I., Mamaeva V.A., Melanin D.A., Komlev D.I., Gnedovets A.G., Novochadov V.V., Komlev V.S., Radyuk A.A.: Structure and shear strength of implants with plasma coatings. Inorg Mater Appl Res 7(3) (2016) 376–387.
  • 10. Heimann R.B.: Materials Science of Bioceramic Coatings. The Open Biomedical Engineering Journal 9 (2015) 25–28.
  • 11. Jemat A., Ghazali M.J., Razali M., Otsuka Y.: Surface modifications and their effects on titanium dental implants. BioMedical Research International 2015 (2015) 791-725.
  • 12. Nicholson J.W.: Titanium Alloys for Dental Implants: A Review. Prosthesis 2 (2020) 100–116.
  • 13. Jung J.H., Kim S.Y., Yi Y.J., Lee B.K., Kim Y.K.: Hydroxyapatite-Coated implant: Clinical prognosis assessment via a retrospective Follow-Up study for the average of 3 years. J Adv Prosthodont 10 (2018) 85–92.
  • 14. Hallab N.J., Jacobs J.J.: Orthopedic Applications. [In] Biomaterials Science, B.D. Ratner, A.S. Hoffman, F.J. Schoen [ed.], Academic Press, San Diego, 2013, pp. 841-882.
  • 15. Kunčická L., Kocich R., Lowe T.C.: Advances in metals and alloys for joint replacement. Prog Mater Sci 88 (2017) 232–280.
  • 16. Fotovvati B., Namdari N., Dehghanghadikolaei A.: On Coating Techniques for Surface Protection: A Review. J Manuf Mater Process 3(1) (2019) 1-22.
  • 17. Łatka L., Szala M., Michalak M., Pałka T.: Impact of Atmospheric Plasma Spray Parameters Cavitation Erosion Resistance of Al2O3–13% TiO2 Coatings Acta Phys. Pol., A 136 (2) (2019) 342-347.
  • 18. Alontseva D., Ghassemieh E., Voinarovych S., Kyslytsia O., Polovetski, N. Prokhorenkova, Kadyroldina A.T.: Manufacturing and characterization of robot assisted microplasma multilayer coating of Titanium implants. Johnson Matthey Technol. Rev. 64(2) (2020) 180–191.
  • 19. Alontseva D., Ghassemieh E., Voinarovych S., Russakova A., Kyslytsia O., Polovetskyi Y., Toxanbayeva A.: Characterisation of the microplasma spraying of biocompatible coating of titanium. Journal of Microscopy 279(3) (2020) 148–157.
  • 20. Alontseva D. L., Azamatov B., Voinarovych S., Kyslytsia O., Koltunowicz T.N., Toxanbayeva A.: Development of Technologies for Manufacturing Medical Implants Using CNC Machines and Microplasma Spraying of Biocompatible Coatings. Przegląd Elektrotechniczny 96(4) (2020)154-157.
  • 21. Alontseva D., Krasavin A., Abilev M., Zhilkashinova A.: Microplasma Deposition of Biocompatible Coatings Using an Intelligent Robotic System for Plasma Processing. Acta Phys. Pol., A 136 (2) (2019) 310-313.
  • 22. Alontseva D.L., Abilev M.B., Zhilkashinova A.M., Voinarovych S.G., Kyslytsia O. N., Ghassemieh E., Russakova A., Łatka L.: Оptimization of hydroxyapatite synthesis and microplasma spraying of porous coatings onto titanium implants. Adv. in Mater. Science 18(3) (57) (2018) 79-94.
  • 23. Implants for Surgery- Plasma-sprayed unalloyed titanium coatings on metallic surgical implants - part 1: General requirements. International Organisation for Standards. BS ISO 13179-1:2014, 2014.
  • 24. Implants for surgery - Hydroxyapatite. Thermally sprayed coatings of hydroxyapatite. British Standards Institution. BS ISO 13779-2:2018, 2018.
  • 25. John A.A., Jaganathan S.K., Supriyanto E., Manikandan A.: Surface modification of titanium and its alloys for the enhancement of osseointegration in orthopaedics. Curr. Sci. 111 (2016) 1003–1015.
  • 26. Yushenko K., Borisov Yu., Voynarovych S., Fomakin О.: Plasmatron for spraying of coatings/ Pub. No.: WO/2004/010747 International Application. No.: PCT/UA2003/000014 Publication Date: 29.01.2004; International Filing Date: 25.04.2003, IPC: H05H 1/32. – 2006.
  • 27. ASTM F136-13(2013) Standard Specification for Wrought Titanium-6Aluminum-4Vanadium ELI (Extra Low Interstitial) Alloy for Surgical Implant Applications (UNS R56401), ASTM International, West Conshohocken, PA, 2013.
  • 28. ASM Handbook, Volume 5A: Thermal Spray Technology, R. C. Tucker, Ed., (2013).
  • 29. Montgomery D.C., Runger G.C., Hubele N.R.: Engineering Statistics, Wiley, Hoboken (NJ), 2001.
  • 30. Yushenko K.A., Borisov Yu.S., Kuznetsov V.D., Korzh V.M.: Inzheneriya poverkhni–Pidruchnyk, Naukova Dumka, Kyiv, 2007. In Ukrainian.
  • 31. Mutter M., Mauer G., Mücke R., Guillon O., Vaben R.: Correlation of splat morphologies with porosity and residual stress in plasma-sprayed YSZ coatings. Surf Coat Technol 318 (2017) 157-169.
  • 32. ASTM E2109-01(2014) Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings, ASTM International, West Conshohocken, PA, 2014.
  • 33. Szala M., Łatka L., Awtoniuk M, Winnicki M., Michalak M.: Neural Modelling of APS Thermal Spray Process Parameters for Optimizing the Hardness, Porosity and Cavitation Erosion Resistance of Al2O3-13 wt% TiO2 Coatings. Processes 8 (2020) 1544.
  • 34. Szala M., Łatka L., Walczak M., Winnicki M.: Comparative Study on the Cavitation Erosion and Sliding Wear of Cold-Sprayed Al/Al2O3- and Cu/Al2O3- Coatings, and Stainless Steel, Aluminium Alloy, Copper and Brass. Metals 10 (2020) 856.
  • 35. Kalita V.I., Malanin D.A., Mamaev A.I., Mamaeva V.A., Novochadov V.V., Komlev D.I, Komlev V.S., Radyuk A.A.: 3D bioactive coatings with a new type of porous ridge/cavity structure. Materialia 15 (2021).
Uwagi
1. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
2. The work was supported by the National Academy of Science of Ukraine under Grant number 0117U004951
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3ae0cbb-d4b3-42f6-be8a-8f23cce2611f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.