PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper studies the effect of incorporating graphene oxide (GO) without surface functionalization on a commercial epoxy resin. GO was dispersed in a commercial epoxy resin at concentrations of 0 wt.%, 0.1 wt.%, 0.5 wt.%, 1 wt.%, and 3 wt.%. The resultant materials were deposited on carbon steel substrates, followed by the use of a 5 wt.% aqueous NaCl electrolyte, to evaluate the effectiveness of their anticorrosive coating function. Scanning electron microscopy (SEM) analysis showed that the GO was homogenously dispersed in the polymer matrix, resulting in flat and smooth surfaces. The X-ray diffraction (XRD) results showed that although GO was highly dispersed in the polymer matrix, multilayer graphene was also obtained after curing. The anticorrosive properties were evaluated by electrochemical impedance spectroscopy (EIS) at various exposure periods. Analysis of the prepared samples indicated that the best anticorrosion performance among them was available with the 0.5 wt.% GO coating. The obtained results indicate that GO–polymer matrix composites provide improved corrosion protection properties even after 500 h exposure to the NaCl solution.
Wydawca
Rocznik
Strony
467--477
Opis fizyczny
Bibliogr. 38 poz., rys., tab.
Twórcy
  • Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Puebla Mexico
  • Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Puebla Mexico
  • Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Puebla Mexico
  • Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Puebla Mexico
  • Dirección de Innovación y Transferencia del Conocimiento, Benemérita Universidad Autónoma de Puebla, Puebla Mexico
  • Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Puebla Mexico
  • Facultad de Ingeniería Química, Benemérita Universidad Autónoma de Puebla, Puebla Mexico
Bibliografia
  • [1] Liu S, Yan HQ, Fang ZP, Wang H. Effect of graphene nanosheets on morphology, thermal stability and flame retardancy of epoxy resin. Compos Sci Technol. 2014;90:40–7
  • [2] Wan YJ, Gong LX, Tang LC,Wu LB, Jiang JX. Mechanical properties of epoxy composites filled with silanefunctionalized graphene oxide. Compos A Appl Sci Manuf. 2014;64:79–89.
  • [3] Qi B, Lu SR, Xiao XE, Pan LL, Tan FZ, Yu JH. Enhanced thermal and mechanical properties of epoxy composites by mixing thermotropic liquid crystalline epoxy grafted graphene oxide. Expr Polym Lett. 2014;8(7):467–79.
  • [4] Wan YJ, Tang LC, Gong LX, Yan D, Li YB, Wu LB, et al. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties. Carbon. 2014;69:467–80.
  • [5] Jiang MY, Wu LK, Hu JM, Zhang JQ. Silaneincorporated epoxy coatings on aluminum alloy (AA2024). Part 1: Improved corrosion performance. Corros Sci. 2015;92:118–26.
  • [6] Ramezanzadeh B, Ghasemi E, Mahdavian M, Changizi E, Moghadam MM. Covalently-grafted graphene oxide nanosheets to improve barrier and corrosion protection properties of polyurethane coatings. Carbon. 2015;93:555–73.
  • [7] Wang X, Xing W, Song L, Yang H, Hu Y, Yeoh GH. Fabrication and characterization of graphene-reinforced waterborne polyurethane nanocomposite coatings by the sol-gel method. Surf Coat Technol. 2012;206(23):4778–84.
  • [8] Alhumade H, Yu A, Elkamel A, Simon L, Abdala A. Enhanced protective properties and UV stability of epoxy/graphene nanocomposite coating on stainless steel. Expr Polym Lett. 2016;10(12):1034–46.
  • [9] Ding R, Li W, Wang X, Gui T, Li B, Han P, et al. A brief review of corrosion protective films and coatings based on graphene and graphene oxide. J Alloys Compds. 2018;764:1039–55.
  • [10] Raman RKS, Banerjee PC, Lobo DE, Gullapalli H, Sumandasa M, Kumar A, et al. Protecting copper from electrochemical degradation by graphene coating. Carbon. 2012;50(11):4040–5.
  • [11] Wang X, XingW, Zhang P, Song L, Yang H, Hu Y. Covalent functionalization of graphene with organosilane and its use as a reinforcement in epoxy composites. Compos Sci Technol. 2012;72(6):737–43.
  • [12] Yang SY, Lin WN, Huang YL, Tien HW, Wang JY, Ma CC, et al. Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon. 2011;49(3):793–803.
  • [13] Chang K-C, Hsu M-H, Lu H-I, Lai M-C, Liu P-J, Hsu C-H, et al. Room-temperature cured hydrophobic epoxy/graphene composites as corrosion inhibitor for cold-rolled steel. Carbon. 2014;66:144–53.
  • [14] Singhbabu YN, Sivakumar B, Singh JK, Bapari H, Pramanick AK, Sahu RK. Efficient anti-corrosive coating of cold-rolled steel in a seawater environment using an oilbased graphene oxide ink. Nanoscale. 2015;7(17):8035– 47.
  • [15] Kim H, Abdala AA, Macosko CW. Graphene/polymer nanocomposites. Macromolecules. 2010;43(16):6515–30.
  • [16] Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, et al. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol. 2008;3(6):327–31.
  • [17] Zheng W, Chen WG, Zhao Q, Ren SX, Fu YQ. Interfacial structures and mechanisms for strengthening and enhanced conductivity of graphene/epoxy nanocomposites. Polymer. 2019;163:171–7.
  • [18] Yang H, Shan C, Li F, Zhang Q, Han D, Niu L. Convenient preparation of tunably loaded chemically converted graphene oxide/epoxy resin nanocomposites from graphene oxide sheets through two-phase extraction. J Mater Chem. 2009;19(46):8856–60.
  • [19] Pourhashem S, Vaezi MR, Rashidi A, Bagherzadeh MR. Distinctive roles of silane coupling agents on the corrosion inhibition performance of graphene oxide in epoxy coatings. Prog Org Coat. 2017;111:47–56.
  • [20] Yarahmadi E, Didehban K, Sari MG, Saeb MR, Shabanian M, Aryanasab F, et al. Development and curing potential of epoxy/starch-functionalized graphene oxide nanocomposite coatings. Prog Org Coat. 2018;119:194–202.
  • [21] Meng F, Zhang T, Liu L, Cui Y, Wang F. Failure behavior of an epoxy coating with polyaniline modified graphene oxide under marine alternating hydrostatic pressure. Surf Coat Technol. 2019;361:188–95.
  • [22] Fazli-Shokouhi S, Nasirpouri F, Khatamian M. Polyaniline-modified graphene oxide nanocomposites in epoxy coatings for enhancing the anticorrosion and antifouling properties. J Coat Technol Res. 2019;16(4):983–97.
  • [23] Wolk A, Rosenthal M,Weiss J, Voigt M, Wesendahl JN, Hartmann M, et al. Graphene oxide as flexibilizer for epoxy amine resins. Prog Org Coat. 2018;122:280–9.
  • [24] Wang M, Ma L, Shi L, Feng P, Wang X, Zhu Y, et al. Chemical grafting of nano-SiO2 onto graphene oxide via thiol-ene click chemistry and its effect on the inter facial and mechanical properties of GO/epoxy composites. Compos Sci Technol. 2019;182:107751; https://doi.org/10.1016/j.compscitech.2019.107751
  • [25] Bortz DR, Heras EG, Martin-Gullon I. Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites. Macromolecules. 2012;45(1):238–45.
  • [26] Pourhashem S, Vaezi MR, Rashidi A, Bagherzadeh MR. Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel. Corros Sci. 2017;115:78–92.
  • [27] Zaaba NI, Foo KL, Hashim U, Tan SJ, Liu WW, Voon CH. Synthesis of graphene oxide using modified hummers method: Solvent influence. Adv Mater ProcessTechnol Conf. 2017;184:469–77.
  • [28] Grundmeier G, Schmidt W, Stratmann MJ. Corrosion protection by organic coatings: Electrochemical mechanism and novel methods of investigation. Electrochim Acta. 2000;45(15–16):2515–33.
  • [29] Zheng T, Xi H, Wang Z, Zhang X, Wang Y, Qiao Y, et al. The curing kinetics and mechanical properties of epoxy resin composites reinforced by PEEK microparticles. Polym Test. 2020;91:106781; https://doi.org/10.1016/j.polymertesting.2020.106781
  • [30] Liao KH, Mittal A, Bose S, Leighton C, Mkhoyan KA, Macosko CW. Aqueous only route toward graphene from graphite oxide. ACS Nano. 2011;5(2):1253–8.
  • [31] Pei S, Cheng HM. The reduction of graphene oxide. Carbon. 2012;50(9):3210–28.
  • [32] Umar MI, Yap CC, Awang R, Jumali MH, Salleh MM, Yahaya M. Characterization of multilayer graphene prepared from short-time processed graphite oxide flake. J Mater Sci. 2013;24(4):1282–6.
  • [33] Johra FT, Lee JW, Jung WG. Facile and safe graphene preparation on solution based platform. J Indus Eng Chem. 2014;20(5):2883–7.
  • [34] Mondal J, Marques A, Aarik L, Kozlova J, Simoes A, Sammelselg V. Development of a thin ceramic-graphene nanolaminate coating for corrosion protection of stainless steel. Corros Sci. 2016;105:161–9.
  • [35] Liu X, Xiong J, Lv Y, Zuo Y. Study on corrosion electrochemical behavior of several different coating systems by EIS. Prog Org Coat. 2009;64(4):497–503.
  • [36] Yu Z, Di H, Ma Y, Lv L, Pan Y, Zhang C, et al. Fabrication of graphene oxide-alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings. Appl Surf Sci. 2015;351:986–96.
  • [37] Wei H, Ding D,Wei S, Guo Z. Anticorrosive conductive polyurethane multiwalled carbon nanotube nanocomposites. J Mater Chem A. 2013;1(36):10805–13.
  • [38] Li Z, Young RJ, Wang R, Yang F, Hao L, Jiao W, et al. The role of functional groups on graphene oxide in epoxy nanocomposites. Polymer. 2013;54(21):5821–9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3ada0f4-2f31-47b6-9687-168e22f4a510
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.