PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure evolution and mechanical properties of underwater dry welded metal of high strength steel Q690E under different water depths

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Q690E high strength low alloy (HSLA) steel has been intensively applied in maritime engineering. Also, the underwater dry welding (UDW) technique has been widely used to repair important offshore facilities. In this paper, joints of Q690E steel were fabricated through single-pass underwater dry welding at three pressures (0, 0.2, and 0.4 MPa). To study the effect of the pressure on the microstructure and mechanical properties of the UDW joint, an optical microscope (OM) and scanning electron microscope (SEM) were used to observe the microstructure and fracture morphology of the welded joints. The electron backscattered diffraction (EBSD) technique was used to analyse the crystallographic features and the crystallographic grain size of the ferrites. The proportion of acicular ferrite (AF) in the UDW joints and the density of low-angle boundaries increase dramatically with the increasing depth of water. The weld metal of UDW-40 shows higher strength because more fine ferrites and low-angle boundaries within UDW-40 impede the dislocation movement.
Rocznik
Tom
Strony
112--119
Opis fizyczny
Bibliogr. 35 poz., rys., tab.
Twórcy
autor
  • School of Mechanical and Automotive Engineering South China University of Technology, Guangzhou 510640, China
  • Guangdong Provincial Engineering Research Center for Special Welding Technology and Equipment South China University of Technology, Guangzhou 510640, China
autor
  • School of Mechatronic Engineering and Automation, Foshan University, Foshan 528000, China
autor
  • School of Mechanical and Automotive Engineering South China University of Technology, Guangzhou 510640, China
  • Guangdong Provincial Engineering Research Center for Special Welding Technology and Equipment South China University of Technology, Guangzhou 510640, China
autor
  • School of Mechanical and Automotive Engineering South China University of Technology, Guangzhou 510640, China
  • Guangdong Provincial Engineering Research Center for Special Welding Technology and Equipment South China University of Technology, Guangzhou 510640, China
Bibliografia
  • 1. J. Łabanowski, “Development of under-water welding techniques”, Welding International, vol. 25, no. 12, pp. 933-937, 2011.
  • 2. M. Rowe and S. Liu, “Recent developments in underwater wet welding”, Science and Technology of Welding and Joining, vol. 6, no. 6, pp. 387-396, 2001.
  • 3. Y. Shi et al., “Microstructure evolution and mechanical properties of underwater dry and local dry cavity welded joints of 690 MPa grade high strength steel”, Materials, vol. 11, no. 1, p. 167, 2018.
  • 4. S. Godwin Barnabas, S. Rajakarunakaran, G. Satish Pandian, A. Muhamed Ismail Buhari, and V. Muralidharan, “Review on enhancement techniques necessary for the improvement of underwater welding”, Materials Today: Proceedings, 2020.
  • 5. N. Guo, Y. Fu, X. Xing, Y. Liu, S. Zhao, and J. Feng, “Underwater local dry cavity laser welding of 304 stainless steel”, Journal of Materials Processing Technology, vol. 260, pp. 146-155, 2018.
  • 6. J. Tomków, J. Łabanowski, D. Fydrych, G. Rogalski, “Cold cracking of S460N steel welded in water environment”, (in English), Polish Maritime Research, vol. 25, no. 3, pp. 131-136, 01 Sep. 2018.
  • 7. C. J. Bayley and A. Mantei, “Influence of weld heat input on the fracture and metallurgy of HSLA-65”, Canadian Metallurgical Quarterly, vol. 48, no. 3, pp. 311-316, 2009.
  • 8. C. Pandey, M. M. Mahapatra, P. Kumar, F. Daniel, and B. Adhithan, “Softening mechanism of P91 steel weldments using heat treatments”, Archives of Civil and Mechanical Engineering, vol. 19, no. 2, pp. 297-310, 2019.
  • 9. C. L. Davis and J. E. King, “Effect of cooling rate on intercritically reheated microstructure and toughness in high strength low alloy steel”, Materials Science and Technology, vol. 9, no. 1, pp. 8-15, 1993.
  • 10. A. Lambert, A. Lambert, J. Drillet, A. F. Gourgues, T. Sturel, and A. Pineau, “Microstructure of martensite–austenite constituents in heat affected zones of high strength low alloy steel welds in relation to toughness properties”, Science and Technology of Welding and Joining, vol. 5, no. 3, pp. 168-173, 2000.
  • 11. D. M. Viano, N. U. Ahmed, and G. O. Schumann, “Influence of heat input and travel speed on microstructure and mechanical properties of double tandem submerged arc high strength low alloy steel weldments”, Science and Technology of Welding and Joining, vol. 5, no. 1, pp. 26-34, 2000.
  • 12. J. Tomków and A. Janeczek, “Underwater in situ local heat treatment by additional stitches for improving the weldability of steel”, Applied Sciences, vol. 10, no. 5, 2020.
  • 13. H. Chen, N. Guo, C. Liu, X. Zhang, C. Xu, and G. Wang, “Insight into hydrostatic pressure effects on diffusible hydrogen content in wet welding joints using in-situ X-ray imaging method”, International Journal of Hydrogen Energy, vol. 45, no. 16, pp. 10219-10226, 2020.
  • 14. J. Tomków, D. Fydrych, G. Rogalski, and J. Łabanowski, “Temper bead welding of S460N steel in wet welding conditions”, Advances in Materials Science, vol. 18, no. 3, pp. 5-14, 01 Sep. 2018.
  • 15. H. Zhang, X. Dai, J. Feng, and L. L. Hu, “Preliminary investigation on real-time induction heating-assisted underwater wet welding”, vol. 1, pp. 8-15, 2015.
  • 16. J. Wang, Q. Sun, T. Zhang, X. Tao, P. Jin, and J. Feng, “Arc stability indexes evaluation of ultrasonic wave-assisted underwater FCAW using electrical signal analysis”, The International Journal of Advanced Manufacturing Technology, vol. 103, no. 5, pp. 2593-2608, 2019.
  • 17. H. Chen, N. Guo, K. Xu, C. Xu, L. Zhou, and G. Wang, “In-situ observations of melt degassing and hydrogen removal enhanced by ultrasonics in underwater wet welding”, Materials & Design, vol. 188, p. 108482, 2020.
  • 18. J. Tomków, D. Fydrych, and G. Rogalski, “Role of bead sequence in underwater welding”, Materials, vol. 12, no. 20, 2019.
  • 19. C. Pandey, M. M. Mahapatra, P. Kumar, N. Saini, and A. Srivastava, “Microstructure and mechanical property relationship for different heat treatment and hydrogen level in multi-pass welded P91 steel joint”, Journal of Manufacturing Processes, vol. 28, pp. 220-234, 2017.
  • 20. C. Pandey, M. M. Mahapatra, P. Kumar, and S. Sirohi, “Fracture behaviour of crept P91 welded sample for different post weld heat treatments condition”, Engineering Failure Analysis, vol. 95, pp. 18-29, 2019.
  • 21. U. Ofem, S. Ganguly, S. Williams, and N. Woodward, “Investigation of thermal cycle and metallurgical characteristics of hyperbaric gas metal arc welding”, International Journal of Offshore and Polar Engineering, vol. 24, no. 03, pp. 206-212, 2014.
  • 22. J. Huang, L. Xue, J. Huang, Y. Zou, H. Niu, and D. Tang, “Arc behavior and joints performance of CMT welding process in hyperbaric atmosphere”, Acta Metall Sin, vol. 52, no. 1, pp. 93-99, 2015.
  • 23. I. Bunaziv, R. Aune, V. Olden, and O. M. Akselsen, “Dry hyperbaric welding of HSLA steel up to 35 bar ambient pressure with CMT arc mode”, The International Journal of Advanced Manufacturing Technology, vol. 105, no. 5, pp. 2659-2676, 2019.
  • 24. Y. Hu, Y. Shi, K. Sun, and X. Shen, “Microstructure evolution and mechanical performance of underwater local dry welded DSS metals at various simulated water depths”, Journal of Materials Processing Technology, vol. 264, pp. 366-376, 2019.
  • 25. V. B. Ginzburg and R. Ballas, Flat rolling fundamentals. CRC Press, 2000.
  • 26. S. Kou, Welding Metallurgy, 2nd ed. Hoboken: JohnWiley & Sons, 2003; pp. 37–42.
  • 27. ASTM E8 / E8M-16ae1, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, PA, 2016, Available: http://www.astm.org.
  • 28. A. S. Azar, N. Woodward, H. Fostervoll, and O. M. Akselsen, “Statistical analysis of the arc behavior in dry hyperbaric GMA welding from 1 to 250 bar”, Journal of Materials Processing Technology, vol. 212, no. 1, pp. 211- 219, 2012.
  • 29. J. Farrell, “Hyperbaric welding of duplex stainless steel pipelines offshore”, Cranfield University, 1996.
  • 30. I. A. Yakubtsov, P. Poruks, and J. D. Boyd, “Microstructure and mechanical properties of bainitic low carbon high strength plate steels”, Materials Science and Engineering: A, vol. 480, no. 1, pp. 109-116, 2008.
  • 31. S. S. Babu, “Acicular ferrite and bainite in Fe–Cr–C weld deposits”, University of Cambridge, 1992.
  • 32. Y. M. Kim, H. Lee, and N. J. Kim, “Transformation behavior and microstructural characteristics of acicular ferrite in linepipe steels”, Materials Science and Engineering: A, vol. 478, no. 1, pp. 361-370, 2008.
  • 33. M. Fattahi, N. Nabhani, M. Hosseini, N. Arabian, and E. Rahimi, “Effect of Ti-containing inclusions on the nucleation of acicular ferrite and mechanical properties of multipass weld metals”, Micron, vol. 45, pp. 107-114, 2013.
  • 34. I. Gutiérrez, “Effect of microstructure on the impact toughness of Nb-microalloyed steel: Generalisation of existing relations from ferrite–pearlite to high strength microstructures”, Materials Science and Engineering: A, vol. 571, pp. 57-67, 2013.
  • 35. G. Terán, S. Capula-Colindres, D. Angeles-Herrera, J. C. Velázquez, and M. J. Fernández-Cueto, “Estimation of fracture toughness KIC from Charpy impact test data in T-welded connections repaired by grinding and wet welding”, Engineering Fracture Mechanics, vol. 153, pp. 351-359, 2016.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3ad2410-5456-455b-8383-bacb76831754
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.