PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The origin and depositional architecture of Paleogene quartz-glauconite sands in the Lubartów area, eastern Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study uses quantitative methods to analyse the latest Bartonian to Early Rupelian sedimentary succession at the SE outskirts of the Polish Lowland Paleogene Basin, in the back-bulge zone of the Carpathian orogenorebulge. The vertical lithotype proportion diagrams from a large number of well logs are compiled to reveal the area’s sequence stratigraphy. Six sequences are recognized and correlated with 3rd-order eustatic sea level cycles. The basal sequence of type 1 is overlain by three sequences of type 2 and followed by a fifth sequence of type 1, whose depositional forced-regressive and lowstand systems tracts brought the main volume of quartz-glauconite sand to the study area. The study focuses further on the deposits of this fifth sequence, exposed and surveyed with GPR in the Nowodwór-Piaski sand pit. Their sedimentary facies analysis reveals the local spatial pattern of a wave-dominated and tidally-influenced sedimentation, supporting the earlier notions of a southern palaeoshoreline and a tectonically-controlled sedimentation.The analysis, aided by multidimensional GPR survey, indicates syndepositional development of a tectonic graben filled laterally by fault scarp-attached large sand bars and an axial action of tidal ebb currents. The bars were formed of shore-derived sand swept by littoral waves from the graben footwall areas. As the graben’s tectonic activity ceased, it became buried by the lowstand regressive sands overlain by gravelly foreshore deposits, most of which were later removed by the Pleistocene glacial erosion. A 3D model of the deposits in the Nowodwór-Piaski area is constructed on the basis of outcrop and GPR data with the use of multiple-point statistical methodology to depict the internal architecture, heterogeneity and spatial relationships of main sedimentary facies. The model can serve as a guide for the future exploration and exploitation of the quartz-glauconite sands in the area and as instructive example of how a petroleum reservoir model of a complex sedimentary succession can be constructed with the use of modern statistical methods.
Rocznik
Strony
125--144
Opis fizyczny
Bibliogr. 86 poz., rys., tab., wykr.
Twórcy
  • Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  • Polish Geological Institute-National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warszawa, Poland
  • Faculty of Civil Engineering, Warsaw University of Technology, Armii Ludowej 16, 00-637 Warszawa, Poland
autor
  • Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warszawa, Poland
autor
  • Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warszawa, Poland
Bibliografia
  • 1. Aleqabi G., Herrmann R. (1993) Ground roll: a potent ial tool for constraining shallow shear-wave structure. Geophysics, 58: 713-719.
  • 2. Allen P.A., Homewood P. (1984) Evolution and mechanics of a Miocene tidal sandwave. Sedimentology, 31: 63-81.
  • 3. Al-Shukri H.J., Mahdi H.H., Tuttle M. (2006) Three-dimensional imaging of earthquake-induced liquefaction features with ground penetrating radar near Marianna, Arkansas. Seismological Research Letters, 77: 505-513.
  • 4. Armstrong M., Galli A., Beucher H., Le Loc’h G., Renard D., Doligez B., Eschard R., Geffroy F. (2011) Plurigaussian Simulations in Geosciences. Springer-Verlag, Berlin.
  • 5. Asch K., ed. (2005) IGME 5000. The 1:5 Miliion International Geological Map of Europe and Adjacent Areas. BGR, Hannover.
  • 6. Baas J.H. (2000) EZ-ROSE: a computer program for equal-area circular histograms and statistical analysis of two-dimensional vectorial data. Computersand Geosciences, 26: 153-166.
  • 7. Bagnold R.A. (1956) The flow of cohesionless grains in fluids. Philosophical Transactions of the Royal Society of London, A249: 235-297.
  • 8. Buchem F.S.P. van, Doligez B., Eschard R., Lerat O., Grammer G.M., Ravenne Ch. (2000) Stratigraphic architecture and stochastic reservoir simulation of mixed carbonate/siliciclastic platform (Upper Carboniferous, Paradox Basin, USA). Bulletin du Centre de Recherches Elf Exploration-Production Mémoire, 24: 1 09-1 29.
  • 9. Boucher A. (2011) Strategies for Modeling with Multiple-point Simulation Algorithms: Closing the Gap. Gussow Geoscience Conference Proceedings.
  • 10. Cattaneo A., Steel R.J. (2003) Transgressive deposits: a review of their variability. Earth-Science Reviews, 62: 187-228.
  • 11. Cattaneo A., Trincardi F., Asioli A., Correggiari A. (2007) The Western Adriatic shelf clinoform: energy-limited bottomset. Continental Shelf Research, 27: 506-525.
  • 12. Catuneanu O. (2006) Principles of Sequence Stratigraphy. Elsevier, Amsterdam.
  • 13. Caumon G., Collon-Drouailler P., Le Carlier de Veslud C., Vieseur S., Sausse J. (2009) Surface-based 3D modelting of geological structures. Mathematical Geoscience, 41: 927-945.
  • 14. Christie M., Tsoxias G.P., Stockli D.F., Black R. (2009) Assessing fault displacement and off-fault deformation in an extensional tectonic setting using 3-D ground-penetrating radar imaging. Journal of Applied Geophysics, 68: 9-16.
  • 15. Clifton H.E. (1976) Wave-formed sedimentary structures - a conceptual model. SEPM Special Publication, 24: 126-148.
  • 16. Clifton H.E., Dingler J.R. (1984) Wave-formed structures and paleoenvironmental reconstruction. Marine Geology, 60: 165-198.
  • 17. Clifton H.E., Hunter R.E., Phillips R.L. (1971) Depositional structures and processes in the non-barred high-energy nearshore. Journal of Sedimentary Petrology, 44: 651-670.
  • 18. Collinson J.D., Thompson D.B. (1982) Sedimentary Structures. Chapman and Hall, London.
  • 19. Colella A. (1988) Pliocene-Holocene fan deltas and braid deltas in the Crati Basin, southern Italy: a consequence of varying tectonic conditions. In: Fan Deltas: Sedimentology and Tectonic Settings (eds. W. Nemec and R.J. Steel): 50-74. Blackie, London.
  • 20. Dam R.L. van (2001) Causes of Ground-penetrating Radar Rexections in Sediment. PhD thesis, Vrije Universiteit, Amsterdam.
  • 21. DeCelles P.G., Giles K.A. (1996) Forei and basin systems. Basin Research, 8: 105-123.
  • 22. Dobrowolski R. (1995) Mesoscopic tectonic structures in the Upper Cretaceous rocks in the east part of Lublin Upland versus faulting of the East-European Platform basement during the Cenozoic. Annales Societatis Geologorum Poloniae, 65: 79-91.
  • 23. Franus M. (2010) Glauconite and its geological applications(in Polish with English summary). PhD thesis, Lublin University of Technology, Lublin.
  • 24. Franus M., Latosińska J. (2009) Wstępna ocena możliwości zastosowania zużytego złoża glaukonitowego jako surowca do produkcji kruszywa keramzytowego (in Polish). Budownictwo i Architektura, 5: 17-27.
  • 25. Franus W., Klinik J., Franus M. (2004) Mineralogical characteristics and textural properties of acid-activated glauconite. Mineralogia Polonica, 35: 53-60.
  • 26. Golonka J., Gahagan L., Krobicki M., Marko F., Oszczypko N., Ślączka A. (2006) Plate-tectonic evolution and paleogeography of the circum-Carpathian region. AAPG Memoir, 84: 11-46.
  • 27. Green A.N., Smith A.M. (2012) Can ancient shelf sand ridges be mistaken for Gilbert-type deltas? Examples from the Vryheid Formation, Ecca Group, KwaZulu-Natal, South Africa. Journal of African Earth Sciences, 60: 303-314.
  • 28. Gringarten E., Deutsch C.V. (2001) Teacher's aide: variogram interpretation and modelling. Mathematical Geology, 33: 507-534.
  • 29. Haq B.U., Hardenbol J., Vail P.R. (1987) Chronology of fluctuating sea levels since the Triassic (250 million years ago to present). Science, 235: 1156-1167.
  • 30. Helland-Hansen W. (2009) Towards the standardization of se- quence stratigraphy: discussion. Earth-Science Reviews, 94: 95-97.
  • 31. Henkiel A. (1983) Tektonika (in Polish). In: Sympozium: Kenozoik Lubelskiego Zagłębia Węglowego: 41-65. Lublin.
  • 32. Howell J., Vassel A., Aune A. (2008) Modelling of dipping clinoform barriers within deltaic outcrop analogues from Cretaceous Western Interior Basin, USA. Geological Society Special Publications, 309: 99-121.
  • 33. Hwang I.G., Heller P.L. (2002) Anatomy of a transgressive lag: Panther Tongue Sandstone, Star Point Formation, central Utah. Sedimentology, 49: 977-999.
  • 34. Jervey M.T. (1988) Quantitative geological modeling of siliciclastic rock sequences and their seismic expression. SEPM Special Publication, 42: 47-69.
  • 35. Jerzykiewicz T., Wojewoda J. (1986) The Radków and Szczeliniec Sandstones: an example of giant foresets on a tectonically controlled shelf of the Bohemian Cretaceous Basin (Central Europe). Canadian Society of Petroleum Geologists Memoir, 11: 1-15.
  • 36. Kasiński J.R., Tołkanowicz E. (1999) Amber in the northern Lublin region - origin and occurrence. In: Investigations into Amber (eds. B. Kosmowska-Ceranowicz and H. Paner): 41-51. Muzeum Archeologiczne, Gdańsk.
  • 37. Kasiński J.R., Tołkanowicz E., Piwocki M., Saternus A., Wojciechowski A. (1997) Realizacja projektu prac geologicznych dla określenia perspektyw występowania złóż bursztynu w utworach eocenu Lubelszczyzny (in Polish). National Geological Archive, 2529/99, Warsaw.
  • 38. Kelkar M., Perez G. (2002) Applied Geostatistics for Reservoir Characterization. Society of Petroleum Engineers, Richardson, Texas.
  • 39. Kosmowska-Ceranowicz B., Leciejewicz K. (1995) Złoża bursztynu na południowym brzegu morza eoceńskiego. In: II Seminarium Amberif: Znaleziska, złoża i kopalnie bursztynu i innych żywic kopalnych: 32-36. Gdańsk-Warszawa.
  • 40. Kosmowska-Ceranowicz B., Kociszewska-Musiał G., Musiał T., Müller C. (1990) Tertiary amber deposits of Parczew vicinity (in Polish with English summary). Prace Muzeum Ziemi, 41: 21-33.
  • 41. Krzowski Z. (1995) Glauconite and its geological applications (in Polish with English summary). Wydawnictwo Uczelniane Politechniki Lubelskiej, Lublin.
  • 42. Krzywiec P. (2007) Tectonics of the Lublin area (SE Poland) - new views based on results of seismic data interpretation (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 422: 5-18.
  • 43. Liu Y., Harding A., Gilbert R., Journel A. (2005) A workflow for multiple-point geostatistical simulation. In: Geostatistics Banff 2004 (eds. O. Leuangthong and C.V. Deutsch), 1: 245-254. Springer-Verlag, Berlin.
  • 44. Lowe D.R. (1976) Grain flow and grain flow deposits. Journal of Sedimentary Petrology, 46: 188-199.
  • 45. Lowe D.R. (1982) Sediment gravity flows, II. Depositional models with special reference to the deposits of high-density turbidity currents. Journal of Sedimentary Petrology, 52: 279-297.
  • 46. Łaptaś A. (1992) Giant-scale cross-bedded Miocene biocalcarenites at the northern margin of the Carpathian foredeep. Annales Societatis Geologorum Poloniae, 62: 149-167.
  • 47. Łozińska-Stępień H., Rytel A., Saliński P. (1985) Explanations to De-ailed Geo logical Map of Poland, scale 1:50,000 Lubartów Sheet (in Polish). Polish Geological Institute, Warsaw.
  • 48. Mallet J. (1997) Discrete modelling for natural objects. Mathematical Geology, 29: 199-191.
  • 49. Mallet J. (2004) Space-time mathematical framework for sedimentary geology. Mathematical Geology, 36: 1-32.
  • 50. Miall A.D. (1977) A review of the braided river depositional environment. Earth-Science Reviews, 13: 1-62.
  • 51. Miall A.D. (1985) Architectural element analysis: a new method of facies analysis applied to fluvial deposits. Earth-Science Reviews, 22: 261-308.
  • 52. Mojski J.E., Rzechowski J., Woźny E. (1966) Upper Eocene deposits near Wieprz River in Luszawa (vicinity of Lubartów) (in Polish with English summary). Przegląd Geologiczny, 14: 513-517.
  • 53. Morawski J. (1960) Characteristics of littoral zone sands of lower Oligocene sea of north Lublin region (in Polish with English summary). Przegląd Geologiczny, 8: 628-633.
  • 54. Nielsen L.H., Johannessen P.N. (2009) Facies architecture and depositional processes of the Holocene-Recent accretionary forced regressive Skagen spit system, Denmark. Sedimentology, 56: 935-968.
  • 55. Olszewska-Nejbert D., Barski M. (2007) Uwagi o wieku utworów paleogeńskich na podstawie cyst Dinoxagellata w Mielniku (wschodnia Polska). In: XX Konferencja Naukowa Paleobiologów i Biostratygrafów PTG (Św. Katarzyna pod Łysicą): 99-100. Polish Geological Society, Kraków.
  • 56. Oszczypko N., Krzywiec P., Popadyuk I., Peryt T. (2006) Carpathian Foredeep Basin (Poland and Ukraine): its sedimentary, structural and geodynamic evolution. AAPG Memoir, 84: 293-350.
  • 57. Parecki A., Bujakowska K. (2004) Dokumentacja geologiczna złoża bursztynu „Górka Lubartowska” w kat. D (in Polish). National Geological Archive, 609/2005, Warsaw.
  • 58. Piwocki M. (2002) Stratigraphy of amber-bearing deposits of northern Lublin region, eastern Poi and (in Polish with English summary). Przegląd Geologiczny, 50: 871-874.
  • 59. Posamentier H.W., Allen G.P. (1999) Siliciclastic Sequence Stratigraphy: Concepts and Applications. SEPM Concepts in Sedimentology and Paleontology, 7.
  • 60. Prasad P., Ramanujam N., Vignesh A., Murti S.H.K., Rasool Q.A., Biswas S.K., Ojha Ch. (2013) Ground penetrating radar a tool to map the seismically induced fault and fracture in the coastal cliff of east coast of Port Blair, Andaman. ARPN Journal of Earth Sciences, 2: 9-14.
  • 61. Purkis S., Vlaswinkel B., Gracias N. (2012) Vertical-to-lateral transitions among Crełaceous carbonate facies - a means to 3-D framework construction via Markov analysis. Journal of Sedimentary Research, 82: 232-243.
  • 62. Ravenne Ch., Galli A., Doligez B., Beucher H., Eschard R. (2002) Quantification of facies relationships via proportion curves. In: Geostatistics Rio 2000 (eds. A. Armstrong, C. Bettini, N. Champigny, A. Galli and A. Remacre): 19-39. Springer-Verlag, Berlin.
  • 63. Ravenne Ch. (2002a) Characterization of reservoirs and sequence stratigraphy: quantification and modelling. Oil and Gas Science and Technology, 57: 311-340.
  • 64. Ravenne Ch. (2002b) Sequence stratigraphy evolution since 1970. Comptes Rendus Palevol, 1: 415-438.
  • 65. Roniewicz P., Wysocka A. (2001) Remarks on Miocene sedimentation in the area between Szydłów and Smerdyna, southeastern margin of Holy Cross Mts. (Central Poland) (in Polish with English summary). Przegląd Geologiczny, 49: 639-642.
  • 66. Strebelle S., Zhang T. (2005) Non-stationary multiple-point geostatistical models. In: Geostatistics Banff 2004 (eds. O. Leuangthong and C.V. Deutsch), 1: 235-244. Springer-Verlag, Berlin.
  • 67. Taner M.A. (1992) Attributes revisited. http://www.rocksolidimages.com/pdf/attrib_revisited.htm
  • 68. Tucker M.E. (2003) Sedi menteiy Rocks in the Field. 3rd Edition, Wiley, Chichester.
  • 69. Uberna J., Odrzywolska-Bieńkowa E. (1977) New localities of Upper Eocene in northern parts of the Lublin region (in Polish with English summary). Kwartalnik Geologiczny, 21 (1): 73-87.
  • 70. Uličny D. (2001) Depositional systems and sequence stratigraphy of coarse-grained deltas in shallow-manne, strike-slip setting: the Bohemian Cretaceous Basin, Czech Republic. Sedimentology, 48: 599-628.
  • 71. Uličny D., Laurin J., Čech S. (2009) Controls on clastic sequence geometries in a shallow-marine, transtensional basin: the Bohemian Cretaceous Basin, Czech Republic. Sedimentology, 56: 1077-1114.
  • 72. Volpi B., Galli A., Ravenne Ch. (1997) Vertical proportion curves: a qualitative and quantitative tool for reservoir characterization. Memorias del I Congreso Latinoamericano de Sedimentologia. Sociedad Venezolana de Geólogia: 351-358.
  • 73. Walker R.G., Plint A.G. (1992) Wave and storm dominated shallow marine system. In: Facies Models: Response to Sea-Level Change (eds. R.G. Walker and N.P. James): 219-238. Geological Association of Canada, St. John's.
  • 74. Wojewoda J. (1986) Fault scarp-induced shelf sand bodies: Turonian of the Intrasudetic Basin. In: 7th European Regional Meeting Kraków, Poland. Excursion Guidebook (ed. A.K. Teisseyre): 31-52. Publishing House of the Polish Academy of Sciences.
  • 75. Wojewoda J. (1997) Upper Cretaceous littoral-to-shelf succession in the Intrasudetic Basin and Nysa Trough, Sudety Mts. (in Polish). In: Obszary Źródłowe: Zapis w Osadach (ed. J. Wojewoda), VI Spotkanie Sedymentologów, 1: 81-96. Lewin Kłodzki.
  • 76. Wojewoda J. (2003) “Gilbert-type delta” versus “accumulation terraces” models and their application to Middle Turonian-Early Coniacian sedimentary setting in the Intrasudetic Basin: a discussion. Geolines, 16: 110-111.
  • 77. Wojewoda J., Burliga S. (2003) Shear zones in unconsolidated deposits as indicators of synsedimentary tectonic movements. Geolines, 16: 110.
  • 78. Wojewoda J., Białek D., Bucha M., Głuszyński A., Gotowała R., Krawczewski J., Schutty B. (2011) Geology of the Góry Stołowe National Park - selected is sues (in Polish with English summary). In: Geoekologiczne Warunki Środowiska Przyrodniczego Parku Narodowego Gór Stołowych (eds. T. Chodak, C. Kabała, J. Kaszubkiewicz, P. Migoń and J. Wojewoda): 53-96. WIND, Wrocław.
  • 79. Woźny E. (1966a) Eocene deposits from Siemień near Parczew City (in Polish with English summary). Kwartalnik Geologiczny, 10 (3): 843-849.
  • 80. Woźny E. (1966b) Fosforyty i bursztyny z Siemienia koło Parczewa (in Polish). Przegląd Geologiczny, 14: 277-278.
  • 81. Wysocka A. (1999) Depositional and tectonic controls on Early Badenian clastic sedimentation in the Sandomierz-Tarnobrzeg area (Baranów Beds, northern Carpathian Foredeep). Geological Quarterly, 43 (4): 383-394.
  • 82. Zappa G., Bersezio R., Felletti F., Giudici M. (2006) Modelling heterogeneity of gravel-sand, braided stream, alluvial aquifers at facies scale. Journal of Hydrology, 325: 134-153.
  • 83. Zecchin M., Caffau M., Civile D., Roda C. (2010) Anatomy of a late Pleistocene clinoformal sedimentary body (Le Castella, Calabria, southern Italy): A case of prograding spit system? Sedimentary Geology, 223: 291-309.
  • 84. Zieliński T. (1995) Kod litofacjalny i litogenetyczny - konstrukcja i zastosowanie osadów czwartorzędowych (eds. E. Mycielska- Dowgiałło and J. Rutkowski): 220-235. University of Warsaw, Warsaw.
  • 85. Zieliński T., Pisarska-Jamroży M. (2012) Which featuresof deposits should be included in a code and which not? (in Polish with English summary). Przegląd Geologiczny, 60: 378-397.
  • 86. Żuk T. (2011) Acquisition, 3-D Display and Interpretation of GPR Data in Fluvial Sedimentology. MSc thesis, University of Birmingham, Birmingham (U.K.).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3ac6426-6c7b-4e2e-aa90-b5042d44b0e6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.