PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Distribution of microhardness in polypropylene/talc microcomposite

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Rozkład mikrotwardości w mikrokompozytach polipropylen/talk
Języki publikacji
EN
Abstrakty
EN
In this study the distribution of microhardness in a polypropylene microcomposite reinforced with talc microparticles was measured experimentally. The microhardness was measured at different points of the composite material to try to observe the effects of the talc particles and their proportion in the composite on the hardness of the reinforced polymer. Four proportions of talc were used: 5,40 and 50 wt.%, in addition to virgin polypropylene, which was taken as the reference. Statistical analysis was performed on the distribution of the microhardness in the PP+talc composites to determine the average microhardness and the standard deviation. The obtained results reveal a random distribution of the microhardness of the composite, but in general the presence of talc particles increases the microhardness of the polypropylene.
Rocznik
Strony
141--148
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
  • Djillali Liabes University, Laboratory of Mechanical and Physical of Materials (LMPM), Sidi Bel-Abbes, Aes, Algeria
  • University Oran 2, Department of Mechanical Engineering, College of Engineering, Algeria
  • Djillali Liabes University, Laboratory of Mechanical and Physical of Materials (LMPM), Sidi Bel-Abbes, Algeria
  • University of Mascara, Department of Mechanical Engineering, Mascara, Algeria
  • Djillali Liabes University, Laboratory of Mechanical and Physical of Materials (LMPM), Sidi Bel-Abbes, Algeria
  • Djillali Liabes University, Laboratory of Mechanical and Physical of Materials (LMPM), Sidi Bel-Abbes, Algeria
  • Djillali Liabes University, Laboratory of Mechanical and Physical of Materials (LMPM), Sidi Bel-Abbes, Algeria
Bibliografia
  • [1] Chan C.M., Wu J., Li J.X., Cheung Y.K., Polypropylene/calcium carbonate nanocomposites, Polymer 2002, 43, 2981-2992.
  • [2] Singer R., Ollick A.M., Elhadary M., Effect of cross-head speed and temperature on the mechanical properties of polypropylene and glass fiber reinforced polypropylene pipes, Alexandria Engineering Journal 2001, 60, 4947-4960.
  • [3] Carvalho G.B., Canevarolo S.V., Sousa J.A., Influence of interfacial interactions on the mechanical behavior of hybrid composites of polypropylene/short glass fibers/hollow glass beads, Polym. Test. 2020, 85, 106418.
  • [4] Nikmatin S., Syafiuddin A., Hong Kueh A.B., Maddu A., Physical, thermal, and mechanical properties of polypropylene composites filled with rattan nanoparticles, J. Appl. Res. Technol. 2017, 15, 386-395.
  • [5] Lin J.-H., Huang C.-L., Liu C.-F., Chen C.-K., Lin Z.-I., Lou C.-W., Polypropylene/short glass fibers composites: effects of coupling agents on mechanical properties, Thermal Behaviors Morphology Materials 2015, 8, 8279-8291.
  • [6] Maddah H.A., Polypropylene as a promising plastic: a review, Am. J. Polym. Sci. 2016, 6, 1-11.
  • [7] Chen J., Yan Y., Sun T., Qi Y., Li X., Probing the roles of polymeric separators in lithium-ion battery capacity fade at elevated temperatures, J. Electrochem. Soc. 2014, 161(9), 1241-1246.
  • [8] Jeencham R., Suppakarn N., Jarukumjorn K., Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fiber/polypropylene composites, Compos. B Eng. 2014, 56, 249-253.
  • [9] Yu L., Ma Y., Loading rate and temperature dependence of flexural behavior in injection-molded glass fiber reinforced polypropylene composites, Compos. B Eng. 2019, 161, 285-299.
  • [10] Shubhra Q.T., Alam A., Quaiyyum M., Mechanical properties of polypropylene composites: a review, J. Thermoplast. Compos. Mater. 2013, 26, 362-391.
  • [11] Eiras D., Pessan L.A., Influence of calcium carbonate nanoparticles on the crystallization of polypropylene, Mater. Res. 2009, 12, 523-527.
  • [12] Hadal R.S., Dasari A., Rohrmann J., Misra R.D.K., Effect of wollastonite and talc on micromechanisms of tensile deformation in polypropylene composites, Materials Science and Engineering A 2004, 372, 296.
  • [13] Md. Gafur A., Nasrin R., Md. Mina F., Md. Bhuiyan A.H., Tamba Y., Asano T., Structures and properties of the compression-molded istactic-polypropylene/talc composites: Effect of cooling and rolling, Polymer Degradation and Stability 2010, 95, 1818-1825.
  • [14] Bouakkaz O., Albedah A., Bachir Bouiadjra B., Sohail MA Khan, Benyahia F., Elmeguenni M., Effect of temperature on the mechanical properties of polypropylene-talc composites, Journal of Thermoplastic Composite Materials 2018, 31(7), 896-912.
  • [15] Premalal H.G.B., İsmail H., Azahari B., Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites, Polymer Testing 2002, 21, 833-839.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3a6bd05-bb5f-47f4-850a-62192b4054ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.