PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exploring the effectiveness of a multilayer neural network model for gold price prediction

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie efektywności wielowarstwowego modelu sieci neuronowej do przewidywania ceny złota
Języki publikacji
EN
Abstrakty
EN
Effective gold price forecasting model is an essential tool for price discovery and benchmarking market changes for mining project across the world. This study presents a model for effective prediction of gold price variation across the world. An experimental analysis was conducted for forecasting monthly US market gold prices from December 1978 to March 2023 using the Autoregressive Integrated Moving Average (ARIMA) model and Multilayer perceptron (MLP) regression model. Optimized hyperparameter search determined the lowest Mean Squared error (MSE) and Mean Absolute (MAE) results with ARIMA (2, 1, 1) and MLP best parameters. The proposed multilayer perceptron (MLP) model demonstrates an improvement in the effective prediction obtained from the experimental analysis
PL
Efektywny model prognozowania cen złota jest niezbędnym narzędziem do odkrywania cen i porównywania zmian rynkowych dla projektów wydobywczych na całym świecie. W badaniu przedstawiono model skutecznego przewidywania zmian cen złota na świecie. Przeprowadzono analizę eksperymentalną w celu prognozowania miesięcznych cen złota na rynku amerykańskim od grudnia 1978 r. do marca 2023 r., stosując model autoregresyjnej zintegrowanej średniej ruchomej (ARIMA) i model regresji perceptronu wielowarstwowego (MLP). Zoptymalizowane wyszukiwanie hiperparametrów pozwoliło uzyskać najniższe wyniki błędu średniego kwadratowego (MSE) i średniego bezwzględnego (MAE) z najlepszymi parametrami ARIMA (2, 1, 1) i MLP. Zaproponowany model perceptronu wielowarstwowego (MLP) wykazuje poprawę efektywnej predykcji uzyskanej na podstawie analizy eksperymentalnej.
Rocznik
Strony
157--161
Opis fizyczny
Bibliogr. 39 poz., rys., tab.
Twórcy
  • Center for Cyber Physical Food, Energy and Water Systems, University of Johannesburg, Auckland Park 2006, South Africa
  • Department of Electrical, Electronic and Computer Engineering, Afe Babalola University Ado-Ekiti, Nigeria
  • Center for Cyber Physical Food, Energy and Water Systems, University of Johannesburg, Auckland Park 2006, South Africa
  • Department of Electrical, Electronic and Computer Engineering, Afe Babalola University Ado-Ekiti, Nigeria
Bibliografia
  • [1] Wen, F., Yang, X., Gong, X., Lai, K.K., 2017. Multi-scale volatility feature analysis and prediction of gold price. Int. J. Informat. Technol. Decis. Making 16, 205–223.
  • [2] Gangopadhyay, K., Jangir, A., Sensarma, R., 2016. Forecasting the price of gold: an error correction approach. IIMB Manag. Rev. 28, 6–12. https://doi.org/10.1016/j.iimb. 2015.11.001.
  • [3] Z. Alameer, M. Abd, A. A. Ewees, H. Ye, and Z. Jianhua, “Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm,” Resour. Policy, vol. 61, no. March, pp. 250–260, 2019, doi: 10.1016/j.resourpol.2019.02.014.
  • [4] N. A. Mwedzi, N. I. Nwulu, and S. L. Gbadamosi, “Machine Learning Applications for Fire Detection in a Residential Building,” ICETAS 2019 - 2019 6th IEEE Int. Conf. Eng. Technol. Appl. Sci., pp. 6–9, 2019, doi: 10.1109/ICETAS48360.2019.9117318.
  • [5] S. L. Gbadamosi and N. I. Nwulu, “A multi-period composite generation and transmission expansion planning model incorporating renewable energy sources and demand response,” Sustain. Energy Technol. Assessments, vol. 39, no. October 2019, p. 100726, 2020, doi: 10.1016/j.seta.2020.100726.
  • [6] S.L. Gbadamosi, N.I. Nwulu. Harmonic estimation on a transmission system with large-scale renewable energy sources, Przeglad Elektrotechniczny, ISSN 0033-2097, R. 97 NR 4/2021.
  • [7] N.I. Nwulu, M. Fahrioglu. Investigating a ranking of loads in avoiding potential power system outages, Przeglad Elektrotechniczny, Volume 88, Issue 11 A, 2012.
  • [8] J. Jasper, Albert Aruldoss. Differential evolution with random scale factor for economic dispatch considering prohibited operating zones, PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 89 NR 5/2013.
  • [9] Rajan, K. Dhayalini , S. Sathiyamoorthy, Genetic Algorithm for the coordination of wind thermal dispatch, PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 90 NR 4/2014.
  • [10] H. Bouzeboudja, M. Maamri , M. Tandjaoui, The Use of Grey Wolf Optimizer (GWO) for Solving the Economic Dispatch Problems based on Renewable Energy in Algeria A case study of “Naama Site”, PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 95 NR 6/2019.
  • [11] W. Khamsen, C. Takeang, Hybrid of Lamda and Bee Colony Optimization for Solving Economic Dispatch, PRZEGLĄD ELEKTROTECHNICZNY, ISSN 0033-2097, R. 92 NR 9/2016.
  • [12] Abu-doush, B. Ahmed, M. A. Awadallah, M. A. Al-betar, and A. Rasheed, “Enhancing multilayer perceptron neural network using archive-based harris hawks optimizer to predict gold prices,” J. King Saud Univ. - Comput. Inf. Sci., vol. 35, no. 5, p. 101557, 2023, doi: 10.1016/j.jksuci.2023.101557.
  • [13] P. Hajek and J. Novotny, “Fuzzy Rule-Based Prediction of Gold Prices using News Affect,” Expert Syst. Appl., vol. 193, p. 116487, 2022, doi: 10.1016/j.eswa.2021.116487.
  • [14] Dooley, G., Lenihan, H., 2005. An assessment of time series methods in metal price fore- casting. Resour. Policy 30, 208– 217. https://doi.org/10.1016/j.resourpol.2005.08.007.
  • [15] Aye, G., Gupta, R., Hammoudeh, S., Kim, W.J., 2015. Forecasting the price of gold using dynamic model averaging. Int. Rev. Financ. Anal. 41, 257–266.
  • [16] Bollerslev, T., 1986. Glossary to arch (garch, in: in Volatility and Time Series Econometrics Essays in Honor of Robert Engle. MarkWatson, Tim Bollerslev and Jerey, Citeseer.
  • [17] Rahimi, Z.H., Khashei, M., 2018. A least squares-based parallel hybridization of statistical and intelligent models for time series forecasting. Comput. Ind. Eng. 118, 44–53.
  • [18] Clements, M.P., Franses, P.H., Swanson, N.R., 2004. Forecasting economic and financial time-series with non-linear models. Int. J. Forecast. 20 (2), 169–183.
  • [19] Chen, Y.H., Chang, F.J., 2009. Evolutionary artificial neural networks for hydrological systems forecasting. J. Hydrol. 367 (12), 125–137.
  • [20] P. Zhang and B. Ci, “Deep belief network for gold price forecasting,” Resour. Policy, vol. 69, no. June, p. 101806, 2020, doi: 10.1016/j.resourpol.2020.101806.
  • [21] Li, Y., Wang, S., Wei, Y., Zhu, Q., 2021. A new hybrid VMD-ICSS-BiGRU approach for gold futures price forecasting and algorithmic trading. IEEE Trans. Comput. Soc. Syst. 8, 1357– 1368.
  • [22] Bhatia, V., Das, D., Tiwari, A.K., Shahbaz, M., Hasim, H.M., 2018. Do precious metal spot prices influence each other? Evidence from a nonparametric causality-in-quantiles approach. Resour. Policy 55, 244–252. https://doi.org/10.1016/j.resourpol.2017.12. 008.
  • [23] P. Ping, S. Yaziz, M. Ahmad and N. Miswan, 'Forecasting Malaysian gold using a hybrid of A ARIMA and GJR-GARCH models', ams, vol. 9, no. 29-32, pp. 1491-15001, 2015.
  • [24] Chatterjee, S., Sethi, M.R., Asad, M.W.A., 2016. Production phase and ultimate pit limit design under commodity price uncertainty. Eur. J. Oper. Res. 248, 658–667. https:// doi.org/10.1016/j.ejor.2015.07.012.
  • [25] Priyadi, I., Santony, J., Na’am, J., 2019. Data mining predictive modeling for prediction of gold prices based on dollar exchange rates, bi rates and world crude oil prices. Indonesian J. Artif. Intell. Data Min. 2, 93.
  • [26] El Hedi Arouri, M., Lahiani, A., & Nguyen, D. K. (2015). World gold prices and stock returns in China: Insights for hedging and diversification strategies. Economic Modelling, 44, 273–282. https://doi.org/10.1016/j.econmod.2014.10.030.
  • [27] Kumar, A., Kumari, S., 2020. Gold price prediction using machine learning. Int. J. Trend Sci. Res. Develop. (ijtsrd) 4, 1448–1456.
  • [28] Sharma, D.K., Hota, H.S., Rababaah, A.R., 2021. Forecasting US stock price using hybrid of wavelet transforms and adaptive neuro fuzzy inference system. Int. J. Syst. Assur. Eng. Manag.
  • [29] Celik, U., Basarir, C., 2017. The prediction of precious metal prices via artificial neural network by using RapidMiner. Alphanumeric J. 5. 45-45.
  • [30] Gupta, N., Nigam, S., 2020. Crude oil price prediction using artificial neural network. Procedia Comput. Sci. 170, 642–647.
  • [31] Vidya, G., Hari, V., 2020. Gold price prediction and modelling using deep learning techniques. In: 2020 IEEE Recent Advances in Intelligent Computational Systems (RAICS), IEEE, pp. 28–31.
  • [32] H. Mombeini and A. Yazdani-chamzini, “Modeling Gold Price via Artificial Neural Network,” J. Econ. Bus. Manag., vol. 3, no. 7, pp. 3–7, 2015, doi: 10.7763/JOEBM.2015.V3.269.
  • [33] Chatterjee, S., Sarkar, S., Hore, S., Dey, N., Ashour, A.S., Balas, V.E., 2017. Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings. Neural Comput. Appl. 28, 2005–2016. https://doi.org/10.1007/ s00521-016-2190-2.
  • [34] C. Christina and R. F. Umbara, “Gold Price Prediction Using,” in International Conference on Information and Communication Technology, IEEE, 2015, pp. 272–277.
  • [35] M. E. Bildirici and B. Sonustun, “Chaotic behavior in gold , silver , copper and bitcoin prices,” Resour. Policy, vol. 74, no. October, p. 102386, 2021, doi: 10.1016/j.resourpol.2021.102386.
  • [36] Basheer, I.A., Hajmeer, M., 2000. Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 43, 3–31. https://doi.org/10.1016/ s0167- 7012(00)00201-3.
  • [37] Atsalakis, G.S., 2016. Using computational intelligence to forecast carbon prices. Appl. Soft Comput. 43, 107–116. https://doi.org/10.1016/j.asoc.2016.02.029.
  • [38] Kanjilal, K., Ghosh, S., 2017. Dynamics of crude oil and gold price post 2008 global financial crisis-New evidence from threshold vector error-correction model. Resour. Pol. 52, 358– 365.
  • [39] Shafiee, S., Topal, E., 2010. An overview of global gold market and gold price forecasting. Resour. Policy 35, 178–189. https://doi.org/10.1016/j.resourpol.2010.05.004.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3a54284-b1e6-46e3-89f9-bc2ef5e48d50
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.