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Abstract

Scanning real 3D objects face many technical challenges. Stationary solutions allow
for accurate scanning. However, they usually require special and expensive equipment.
Competitive mobile solutions (handheld scanners, LiDARs on vehicles, etc.) do not al-
low for an accurate and fast mapping of the surface of the scanned object. The article
proposes an end-to-end automated solution that enables the use of widely available mo-
bile and stationary scanners. The related system generates a full 3D model of the ob-
ject based on multiple depth sensors. For this purpose, the scanned object is marked
with markers. Markers type and positions are automatically detected and mapped to a
template mesh. The reference template is automatically selected for the scanned ob-
ject, which is then transformed according to the data from the scanners with non-rigid
transformation. The solution allows for the fast scanning of complex and varied size ob-
jects, constituting a set of training data for segmentation and classification systems of
3D scenes. The main advantage of the proposed solution is its efficiency, which enables
real-time scanning and the ability to generate a mesh with a regular structure. It is crit-
ical for training data for machine learning algorithms. The source code is available at
https://github.com/SATOffice/improved_scanner3D.
Keywords: 3D scan, LiDAR, point cloud, mesh, registration

1 Introduction

Classification, segmentation, and 3D data gen-
eration tasks performed by new algorithms and
neural network models achieve statistically signif-
icantly worse results than similar tasks for 2D data
(images). This fact results from the lack of a spa-
tial relation of any two points to the data posi-
tion representing those points in the input stream.

To overcome this disadvantage, the grid structure
and the voxel-based modelling are most often intro-
duced [52]. Unfortunately, the approach introduces
other negative consequences: a significant increase
in memory consumption by a single 3D scene and
the loss of information in the discretization process.
Another way to introduce spatial relations is to op-
erate on the so-called regular meshes [49]. In struc-
tures of this type, the order of mesh vertices in the
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input stream for all mesh instances containing the
object data is identical. This approach category is
usually called the template method. The main ad-
vantage is effectively solving the main challenge of
the scanning process - shadows and holes. How-
ever, they may miss some details of the object itself
when they are not reflected in the template.

The paper presents an end-to-end system that
generates regular 3D meshes for any objects
scanned by devices that read the depth of the image.
The method is flexible, allowing for scanning sta-
tionary and moving objects with multiple devices.
Moreover, the method does not require a manual
indicating the correspondence between individual
scans, the point cloud, and the template mesh. The
presented tool can be used to quickly create new
datasets for current and new neural network archi-
tectures and artificial intelligence algorithms. The
software can be integrated with data sources offered
on Kaggle, the open platform that provides Machine
Learning and Data Science Community with pow-
erful tools and resources needed for AI experiments
[46]. A novelty of the presented work includes the
following aspects:

– automatic process of a regular mesh genera-
tion based on readings from many synchronized
depth sensors that allows performing a scan in
less than 500ms for a setup of ten sensors,

– simultaneous use of markers to register multiple
point clouds and determine rigid and non-rigid
transformations,

– simultaneous use of many types of flat and 3D
markers,

– universal system for scanning any 3D objects
(shape, size, rigidness) thanks to the use of a
dataset of templates.

2 Related works

Acquisition of 3D models basing on the scan-
ning process and geometric modelling or graphical
construction of objects is well-known in computer
graphics research [1, 5]. Significant technological
progress in graphics processors manufacturing and
reducing production costs created a space for the
dynamic development of the AI / ML area [6, 7, 2].

The progress is also noticeable in scanning and pro-
cessing 3D images and 3D modelling [3, 4]. How-
ever, the demand for new solutions determines a
permanent development trend.

2.1 Datasets of 3D models

The basis for the operation of AI/ML algo-
rithms is the availability of appropriate datasets.
The experimental activity, algorithm development,
and optimization work are impossible without ac-
curate input data. Therefore, the global giants of
the IT industry have actively participated in creat-
ing and expanding datasets for many areas of life.

Google concentrates on creating high-quality
models of common household items [37]. They
prepared a dedicated scanning lab for that pur-
pose and introduced many software optimizations.
The dataset currently stores more than a thousand
scanned objects [38]. ABO Dataset is a result of
cooperation between Amazon company and Berke-
ley University [39]. This dataset consists of listings
of products from 576 product types sold by vari-
ous Amazon-owned stores and websites [40]. An-
other giant, Facebook AI Research, introduced the
Common Objects in 3D (CO3D) [41] dataset com-
prising 1.5 million multi-view images of almost 19k
objects [42]. Finally, another world giant, Alibaba
Group company Tao Bao China Software Co [43]
introduced the 3D-FUTURE dataset, which pro-
vides more than 20 thousand indoor images and the
associated unique 3D furniture models with rich ge-
ometry details and informative textures[43].

Only several examples were mentioned above.
However, the area of creating 3D model datasets
is developing fast way. That may be a key driver
in fulfilling large-scale datasets designed to help
bridge the gap between real and virtual 3D worlds.

2.2 Scanning equipment

There are many scanning methods, as well as
many hardware solutions currently available on the
market. The progressive miniaturization and con-
tinuous expansion of possibilities, which go hand
in hand with lowering the equipment cost, signifi-
cantly increase the opportunities for the entire pro-
cess and its dissemination. To obtain 3D models, it
is necessary to have an expensive studio [29, 30, 31]
or expensive mobile scanners [32, 33, 34, 35]. It
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is possible to use devices such as Intel RealSense
cameras, Microsoft Kinect, Intel LiDAR, Structure
Sensor, or even smartphone devices [8, 9, 10, 11,
12, 45, 13].

From the methodological point of view, we dis-
tinguish depth sensors based on Kinect technology
(a grid of infrared beams) and LiDAR sensors. We
can find various kinds of sensors available on the
market, starting from stationary, manual, and ro-
tary, and ending with smartphone-built. Apart from
the size, price, and reliability, each device has its
own quality properties that determine the scanning
process. The output parameters of the obtained
fragments of the scanned surface, configuration op-
tions, or the calibration itself are also important
here. There are many comparisons of these devices
[14, 15]. For the purposes of this study, a further
part of the research was based on LiDAR, which
looks the most promising.

2.3 Light Detection and Ranging

The method LiDAR (Light Detection and Rang-
ing) relies on measuring distance by illuminating an
object with laser light (intense light pulses of a spe-
cific wavelength and in a particular direction) and
then measuring the light reflected from the object
with a sensor. The creation of three-dimensional
models (fragments visible by the sensor) is based
on the measurement of the difference in the laser
beam’s return time and the wavelength change. The
device itself is a combination of a telescope and a
laser sensor with an advanced optical system. The
scattering of the light beam resulting from a col-
lision with an object is observed with the device’s
telescope and then recorded and examined with a
glass detector [18, 19].

There are many attempts to apply the solution
in various industries. Especially after the man-
ufacturer introduced performance improvements,
they are popular in modelling static objects (e.g.
buildings or terrain) and in much more ambitious
challenges connected with the move and dynamic
changes in autonomous driving [17]. However, the
use of LiDAR is still limited by the scanning accu-
racy. So the scanning algorithm and way of pro-
cessing obtained data still require future optimiza-
tion [16].

Intel is the market leader in this area and the
owner of efficient technology. It is worth emphasiz-
ing that the range of RealSense Technology prod-
ucts includes hardware solutions and extended sup-
port for developers, including the Intel RealSense
SDK 2.0 library [24]. The open-source, cross-
platform solution supports the most popular pro-
gramming languages. It supports depth and colour
streaming and advanced calibration information.
The library also allows for synthetic streams, in-
cluding operations on point clouds and depth ad-
justed to the colour [25]. It is a solution that allows
remote management of the device itself [26].

2.4 Not visible parts

The main challenge in creating a complete 3D
model based on data from the structured light sensor
is missing the object’s interior parts and the inclu-
sion of unnecessary background elements. There
are many approaches for extracting an object or re-
moving extreme elements of a scene or background
[20]. However, they will not be analyzed further
due to the concentration of this work on the process
of creating 3D objects. It is assumed that the extrac-
tion of an object’s fragment is carried out correctly.
It is achieved by adequately positioning the sensors
and arranging the scene to avoid this challenge.

Two main methods to solve the problem of 3D
object creation are classical algorithms and ma-
chine learning models. Classical ones are based
on knowledge about the object through theorems
or characteristic properties (axes of symmetry, pro-
portions, etc.). Other methods use the iterative ap-
proach to combining point clouds, Simultaneous
Localization, and Mapping (SLAM), which com-
bine multiple frames taken over time into the final
representation of 3D objects [36].

To carry out the scanning process correctly, the
proper arrangement of the devices is crucial. If it is
impossible to cover the entire object (because of its
size and sensor distance balance), the sensors need
to be placed one above the other). It is also essential
to put them in such a way that they do not blind each
other. For further work, it is assumed that many sen-
sors observe the entire object. Therefore, the chal-
lenge will be to faithfully combine these parts to
reflect the whole object.
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2.5 Point cloud creation

Each device produces its point cloud, represent-
ing fragments of the object visible by the device.
Of course, they are not perfect. However, the more
significant challenge is to synchronize (assemble)
them, and remove unnecessary parts, so that you get
one collective point cloud that is as close as possible
to the real object.

Point cloud manipulation is resource-
consuming. Moreover, calculating the shared/com-
mon part of the object between two point clouds
is even more challenging. It is why in many al-
gorithms, markers are introduced. Usually printed,
simple QR codes are used as stickers on the scanned
object or in the background [27]. The goal is to lo-
cate a marker appropriately, to be seen clearly by at
least two sensors.

3 The proposed scanning process

The central assumption of the proposed solu-
tion is the possibility of fast, automatic generation
of regular 3D meshes using any device that reads
the image depth. It also applies to scanning moving
objects. Therefore, it became necessary to intro-
duce two steps preceding the generation of the final
model in the process. The first step in the process is
synchronizing the reading from multiple scanning
devices. In the second one, mesh key nodes are rec-
ognized thanks to markers placed on the scanned
object. Currently, two types of markers are sup-
ported: ArUCO (square-shaped, black border with
a binary matrix inside) [47] and geometric markers
(in our case, coloured spheres).

3.1 Data synchronization from multiple
devices

Scanning 3D objects are commonly possible
due to the availability of handheld scanners based
on LiDAR technology [18, 19] or a structured light
[9]. However, the use of this technology is limited
to stationary objects only. Objects that cannot re-
main stationary for a long time, such as items mov-
ing on the production lines, cannot be effectively
scanned with these technologies. It becomes neces-
sary to run multiple scanners simultaneously.

Figure 1. Multiple device object scanning

Unfortunately, this cannot be done due to light
interference from multiple independent sources.
Therefore, the paper proposes a technology for syn-
chronizing multiple devices, performing a compre-
hensive scan in no more than 50 ms per device
(10ms to warm up the laser and 33ms per frame)
[48]. Intel proposed another solution in [48]. How-
ever, their solution requires using additional execu-
tive units, i.e. RasberryPi.

The proposed solution uses only one computer
on which the scanning program has been run with
an additional USB-GPIO converter module, for ex-
ample, FT232H. The scanning program automati-
cally selects which device is to read the object. A
scheme of the scanning system implementation is
shown in Figure 1, and one of the setups in Figure 2.

Figure 2. An example for a scene setup

3.2 Identification of key nodes of the mesh

We get many unrelated depth images regardless
of the number of data sources (single mobile device,
many sequential scanning devices). The registra-
tion process of many images into one point cloud
is most often carried out using one of the many
variants of the ICP algorithm, sometimes supported
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by data from IMU sensors [22]. For the correct
operation of ICP, it is necessary to indicate corre-
spondence points. The most common method is
to manually indicate a few correspondence points
on the two images we want to merge, generate the
remaining points automatically, and then run the
ICP algorithm. The result includes a point cloud
merged from two or more images. However, the
above approach does not solve the correspondence
problem with a pattern mesh. It is proposed to use
the same correspondence points in the registration
process and the non-rigid transformation of the pat-
tern mesh. Thanks to this, the creation of regular
3D meshes is fully automated. The only thing that
needs to be done manually is to place the marker of
the selected mesh key nodes on the actual object in
the appropriate place corresponding to the node lo-
cation in the mesh. Two types of markers are used
in work: flat (ArUCO) and spatial (coloured geo-
metric spheres) [47]. During scanning, the marker
type is automatically detected. The information
about its identifier and vertex’s index of the cen-
tre of the marker is saved in the structure describing
the point cloud. Radial filtering and downsampling
are performed to speed up the calculations. The de-
tected tags are then used to register all depth images
using the ICP algorithm.

3.3 Template-scan registration

The mesh template to the point cloud registra-
tion process is presented in Figure 3.

Figure 3. Registration process

After removing the markers from the scanned
object, we get a scanned point cloud Ps, which will
be used as the target for template-scan registration.
Ps can be described as finite set of ns points:

Ps =
{

pi|pi ∈ R3, i = 1, ...,ns
}

(1)

Our source point cloud will be the vertices Vt in
the template mesh Mt from the database of template
3D models. The correct template will be selected
based on the image classification. Apart from the
set of vertices, mesh also consists of a set of faces
Ft that will remain unchanged until the end of the
algorithm. The lack of faces modification guaran-
tees that the structure will be preserved for all the
resulting models using the same template:

Mt = {Vt ,Ft} (2)

The Vt set can be described similarly to the Ps

but the number of vertices nt can be different from
the number of points ns:

Vt =
{

v j|v j ∈ R3, j = 1, ...,nt
}

(3)

With given two finite size points sets Ps and
Vt , our goal is to find such a transformation T ∗

that will provide the best alignment between the
transformed template mesh vertices T ∗(Vt) and the
scanned model Ps. The best transformation can be
described as such transformation T from the set of
all transformations τ that the distance function be-
tween the transformed pattern and the source point
cloud is minimal:

T ∗ = argmin
T∈τ

dist(T (Vt),Ps) (4)

The distance function between sets of points
can be defined as the sum of the distances between
each point v and the point closest to it pm:

dist(T (Vt),Ps) = ∑
v∈T (Vt)

∥t − pm∥ (5)

pm = argmin
p∈Ps

∥t − p∥ (6)

Thanks to the use of markers on the scanned
object, we can split the T ∗ transformation into two
simpler to estimate operations, optimal rigid trans-
formation with scaling T ∗

R and optimal non-rigid
transformation T ∗

N .
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For rigid transformation in dist function instead
of the closest point pm we will use the set of corre-
sponding points C:

C = {(pn,vn)|pn ∈ Ps,vn ∈Vt , l = 1, ...,nc} . (7)

The T ∗
R is such a rigid transformation with scal-

ing that the sum of euclidean distances between cor-
responding points from the set C is minimal:

T ∗
R = argmin

TR∈τr

n

∑
i=1

√
(pn1 − vn1)2 +(pn2 − vn2)2 +(pn3 − vn3)2

(8)

This transformation can be defined with three
parameters s - scale parameter, R - rotation matrix,
and i - translation. With these parameters, we can
calculate the transformed position T ∗

R (p):

T ∗
R (p) = sRx+ t (9)

In non-rigid deformation of the point cloud, we
estimate and apply optimal transformation for each
individual point pi and calculate transformation for
this point T ∗

Ni
(pi):

T ∗
Ni
(pi) = siRixi + ti (10)

The values of these parameters can be calcu-
lated using various algorithms such as Non-rigid
Iterative Closest Point (NICP) [21, 22] or Robust
point matching [23]. In our implementation, we
used the Neural Deformation Pyramid method [21].
We chose this method because it offered very good
results for the tested point clouds with a relatively
short runtime compared to other tested solutions
[50, 51].

The Neural Deformation Pyramid is a hierar-
chical model in which each level contains a Multi-
Layer Perception (MLP). Each perceptron takes as
input a sinusoidally encoded 3D point and the out-
put from the previous level. After both registrations,
we create a mesh result connecting points in faces
as in the original set of faces Ft . The whole process
is presented in Figure 4.

Figure 4. The calculation steps of proposed
process

4 Main results

The solution was validated by performing sev-
eral dozen scans of real objects of various sizes and
shapes. Figure 5 presents an exemplary scan of the
object. It was assumed that the vertices created as
a result of a scan represent the real object points
(small fragments). Then, an error function that de-
scribes the deformation of a face on the surface was
introduced. The error may result from two reasons:
a different location of the segment ends and the de-
formation of the actual surface of the object from
the linearly interpolated face in the mesh. There-
fore, the mapping error is defined as the sum of
the squared interpolation errors for each edge of the
mesh:

ε = ∑i∈E εi1 + εi2

|E|
(11)

where E is a set of mesh edges.

The interpolation error is determined as the spa-
tial shift of the edge vertices relative to the actual
position corresponding to the vertices of the mea-
surement points on the object surface and the defor-
mation of the interpolated face with respect to the
actual plane:

εi1 =
abs(||pi0 , pi1 ||− ||v j0 ,v j1 ||)

||pi0 , pi1 ||
(12)

v j0 ,v j1 - are ends of the edge in the final mesh
corresponding to vertices pi0 , pi1 ,

pi0 , pi1 - are closest points to v0,v1 in scan point
cloud,

d - is the distance from the centre of the edge to
the closes point in the point cloud, and:

εi2 =
||d||

||pi0 , pi1 ||
(13)
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For rigid transformation in dist function instead
of the closest point pm we will use the set of corre-
sponding points C:

C = {(pn,vn)|pn ∈ Ps,vn ∈Vt , l = 1, ...,nc} . (7)

The T ∗
R is such a rigid transformation with scal-

ing that the sum of euclidean distances between cor-
responding points from the set C is minimal:

T ∗
R = argmin

TR∈τr

n

∑
i=1

√
(pn1 − vn1)2 +(pn2 − vn2)2 +(pn3 − vn3)2

(8)

This transformation can be defined with three
parameters s - scale parameter, R - rotation matrix,
and i - translation. With these parameters, we can
calculate the transformed position T ∗

R (p):

T ∗
R (p) = sRx+ t (9)

In non-rigid deformation of the point cloud, we
estimate and apply optimal transformation for each
individual point pi and calculate transformation for
this point T ∗

Ni
(pi):

T ∗
Ni
(pi) = siRixi + ti (10)

The values of these parameters can be calcu-
lated using various algorithms such as Non-rigid
Iterative Closest Point (NICP) [21, 22] or Robust
point matching [23]. In our implementation, we
used the Neural Deformation Pyramid method [21].
We chose this method because it offered very good
results for the tested point clouds with a relatively
short runtime compared to other tested solutions
[50, 51].

The Neural Deformation Pyramid is a hierar-
chical model in which each level contains a Multi-
Layer Perception (MLP). Each perceptron takes as
input a sinusoidally encoded 3D point and the out-
put from the previous level. After both registrations,
we create a mesh result connecting points in faces
as in the original set of faces Ft . The whole process
is presented in Figure 4.

Figure 4. The calculation steps of proposed
process

4 Main results

The solution was validated by performing sev-
eral dozen scans of real objects of various sizes and
shapes. Figure 5 presents an exemplary scan of the
object. It was assumed that the vertices created as
a result of a scan represent the real object points
(small fragments). Then, an error function that de-
scribes the deformation of a face on the surface was
introduced. The error may result from two reasons:
a different location of the segment ends and the de-
formation of the actual surface of the object from
the linearly interpolated face in the mesh. There-
fore, the mapping error is defined as the sum of
the squared interpolation errors for each edge of the
mesh:

ε = ∑i∈E εi1 + εi2

|E|
(11)

where E is a set of mesh edges.

The interpolation error is determined as the spa-
tial shift of the edge vertices relative to the actual
position corresponding to the vertices of the mea-
surement points on the object surface and the defor-
mation of the interpolated face with respect to the
actual plane:

εi1 =
abs(||pi0 , pi1 ||− ||v j0 ,v j1 ||)

||pi0 , pi1 ||
(12)

v j0 ,v j1 - are ends of the edge in the final mesh
corresponding to vertices pi0 , pi1 ,

pi0 , pi1 - are closest points to v0,v1 in scan point
cloud,

d - is the distance from the centre of the edge to
the closes point in the point cloud, and:

εi2 =
||d||

||pi0 , pi1 ||
(13)
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Figure 5. Registration process result: (a) selected
mesh template, (b) low-quality scan, (c) final result

The interpolation error of the proposed method
for representative scanned objects is presented in
Table 1. The choice of objects presented in the ta-
ble was dictated to determine the dependence of the
error value on the scanned object’s shape and size.
Experimental data show a correlation between the
quality of the depth image (depending on many fac-
tors, including light conditions) and the interpola-
tion error. Better scan quality translates to lower er-
ror. Likewise, the error’s value depends on the mesh
template quality. A more accurate pattern means
less interpolation error. Further work is required to
develop the quantitative relation between interpola-
tion error and parameters of the scanning process.

Table 1. Point cloud to average mesh error

Object Category Models Mean Error
Box 4 11.8901%
Plastic bottle 5 7.4098%
Ball 3 3.8723%
Tennis racket 2 12.0073%
Toy car 2 12.1287%
Teddy bear 1 15.9376%
Food container 4 8.3023%
Toy snowman 1 6.5412%

5 Conclusion

The lack of publicly available databases of dig-
ital models, similar to 2D photo databases, is one of
the barriers to developing artificial intelligence al-
gorithms that operate on 3D data. The challenges
related to accurately mapping spatial objects to dig-
ital models are currently being studied by the most

important research institutions worldwide, includ-
ing large IT companies. Unfortunately, the solu-
tions they use are costly and technically compli-
cated. Moreover, the scanning process is long and
cannot scan moving objects. The proposed solu-
tion is much easier and more economical to imple-
ment, achieving similar accuracy to the generated
3D models.

The proposed method allows for sufficiently
fast scanning so that any movements do not affect
the quality of the final result. Due to its nature, the
technique is ideal for scanning geometrically con-
cave objects. Regardless of the depth sensing de-
vice, the surface cannot be scanned in the so-called
shadows. The proposed method completes miss-
ing information about invisible surfaces based on
a mesh template. So we get a detailed model of the
object with no holes and a hidden interior. What
is more, it does not require complicated mechanical
devices. The method is simple and requires only
depth sensors, markers, a workstation, and publicly
available software. The quality of appropriate mesh
templates is the main limiting factor for the pro-
posed method. Nevertheless, the most crucial ad-
vantage of the proposed method is that it signifi-
cantly simplifies the creation of datasets crucial for
AI/ML algorithms. That can be especially promis-
ing for algorithms operating in real-time on moving
objects or living matter.
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