PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of BaO and Li2O on Basic Characteristics of Mold Fluxes with Different Basicity

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Lubrication and heat transfer control are two significant functions of mold fluxes. In order to coordinate the contradiction between lubrication and heat transfer, the effects of BaO and Li2O on basic characteristics of CaO-SiO2 based mold fluxes were studied by hemispherical melting temperature instrument, rotating cylinder method, X-ray diffractometer (XRD) in present study. The results show that the melting temperature and viscosity at 1300°C all represent a downward trend with BaO and Li2O enhancement at different basicity, and the break temperature decrease with BaO addition while decrease and then increase with Li2O addition, which illustrates that Li2O content should be no more than 0.8 wt% for the purpose of lubrication. Meanwhile, to ensure a sufficient thickness of the liquid slag film and avoid discontinuity of the liquid slag film, the BaO content is better to be 10 wt% with low melting temperature and viscosity. The main crystalline phase in the mold fluxes is cuspidine (3CaO·2SiO2·CaF2), and the crystallization ratio rises sharply when basicity increased to 1.65. For better deal with the contradiction of lubrication and heat transfer, the mold fluxes composition w(BaO) = 10 wt%, w(Li2O) = 0.8 wt%, R ≥1.65 is reasonable, which has a profound impact on high crystallization and lubricity mold fluxes.
Słowa kluczowe
Twórcy
  • Anhui University of Technology, School of Metallurgical Engineering, Anhui, Ma’anshan, 243032, China
  • Anhui University of Technology, Key Laboratory of Metallurgical Emission Reduction & Resource Recycling (Ministry of Education), Anhui, Ma’anshan, 243002, China
  • Anhui University of Technology, School of Metallurgical Engineering, Anhui, Ma’anshan, 243032, China
autor
  • Anhui University of Technology, School of Metallurgical Engineering, Anhui, Ma’anshan, 243032, China
  • Anhui University of Technology, Key Laboratory of Metallurgical Emission Reduction & Resource Recycling (Ministry of Education), Anhui, Ma’anshan, 243002, China
  • Anhui University of Technology, School of Metallurgical Engineering, Anhui, Ma’anshan, 243032, China
autor
  • Anhui University of Technology, School of Metallurgical Engineering, Anhui, Ma’anshan, 243032, China
  • Anhui University of Technology, Key Laboratory of Metallurgical Emission Reduction & Resource Recycling (Ministry of Education), Anhui, Ma’anshan, 243002, China
Bibliografia
  • [1] T. Emi, H. Fredriksson, High-speed continuous casting of peritectic carbon steels, Materials Science and Engineering: A 413, 2-9 (2005). DOI: https://doi.org/10.1016/j.msea.2005.08.169
  • [2] H. Zhao, X. Wang, J. Zhang, Research on mold flux for hypoperitectic steel at high casting speed, Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material. 14 (3), 219-224 (2007). DOI: https://doi.org/10.1016/S1005-8850(07)60042-5
  • [3] J.A. Kromhout, S. Melzer, E.W. Zinngrebe, A.A. Kamperman, R. Boom, Mould powder requirements for high-speed casting, Steel Research International 79 (2), 143-148 (2008). DOI: https://doi.org/10.1002/srin.200806329
  • [4] B. Zhai, L. Zhang, W. Wang, Comprehensive study of CaO-SiO2-Based MgO/Li2 O-modified mold flux system for the casting of peritectic steels, Steel Research International 91 (10), 2000204 (2020). DOI: https://doi.org/10.1002/srin.202000204
  • [5] K.C. Mills, A.B. Fox, The Role of mould fluxes in continuous casting-So Simple Yet So Complex. ISIJ international 43 (10), 1479-1486 (2003). DOI: https://doi.org/10.2355/isijinternational.43.1479
  • [6] K.C. Mills, A.B. Fox, Z. Li, R.P. Thackray, Performance and properties of mould fluxes, Ironmaking & Steelmaking 32 (1), 26-34 (2005). DOI: https://doi.org/10.1179/174328105X15788
  • [7] K.C. Mills, L. Courtney, A.B. Fox, B. Harris, Z. Idoyaga, M.J. Richardson, The use of thermal analysis in the determination of the crystalline fraction of slag films, Thermochimica Acta 391 (1-2), 175-184 (2002). DOI: https://doi.org/10.1016/S0040-6031(02)00175-2
  • [8] J.A. Kromhout, V. Ludlow, S. Mckay, A.S. Normanton, M. Thalhammer, F. Ors, T. Cimarelli, Physical properties of mould powders for slab casting, Ironmaking & Steelmaking 29 (3), 191-193 (2002). DOI: https://doi.org/10.1179/030192302225004133
  • [9] V. Ludlow, B. Harris, S. Riaz, A. Normanton, Continuous casting mould powder and casting process interaction: why powders do not always work as expected, Ironmaking & Steelmaking 32 (2), 120-126 (2005). DOI: https://doi.org/10.1179/174328105X15850
  • [10] S.P. He, X. Long, J.F. Xu, T. Wu, Q. Wang, Effects of crystallisation behaviour of mould fluxes on properties of liquid slag film, Ironmaking & Steelmaking 39 (8), 593-598 (2013). DOI: https://doi.org/10.1179/1743281212y.0000000006
  • [11] S. Sridhar, K.C. Mills, O.D.C. Afrange, H.P. Lrz, R. Carli, Break temperatures of mould fluxes and their relevance to continuous casting, Ironmaking & Steelmaking 27 (3), 238-242 (2000). DOI: https://doi.org/10.1179/030192300677534
  • [12] P. Tang, X.U. Chu-Shao, G.H. Wen,Y.H. Zhao, Q.I. Xin, Heat flux through slag film and its crystallization behavior, Journal of iron and Steel Research, International 15 (4), 6 (2008). DOI: https://doi.org/10.1016/S1006-706X(08)60135-1
  • [13] R. Taylor, K.C. Mills, Physical properties of casting powders. III. Thermal conductivities of casting powders, Ironmaking & Steelmaking 15 (4), 187-194 (1988).
  • [14] K. Watanabe, M. Suzuki, K. Murakami, H. Kondo, A. Miyamoto, T. Shiomi, The effect of crystallization of mold powder on the heat transfer in continuous casting mold, Tetsu-to-Hagane. (1997).
  • [15] L. Zhu, Theoretical research and application of ultrahigh-basicity mold fluxes for peritectic steel, Chongqing University (2018).
  • [16] H. Liu, G. Wen, P. Tang, Crystallization behaviors of mold fluxes containing Li2O using single hot thermocouple technique, ISIJ International 49 (6), 843-850 (2009). DOI: https://doi.org/10.2355/isijinternational.49.843
  • [17] M.D. Seo, C.B. Shi, J.W. Cho, S.H. Kim, Crystallization behaviors of CaO-SiO2-Al2O3-Na2O-CaF2-(Li2O-B2O3) mold fluxes, Metallurgical and Materials Transactions B 45 (5), 1874-1886 (2014). DOI: https://doi.org/10.1007/s11663-014-0091-2
  • [18] Z. Piao, L. Zhu, X. Wang, P. Xiao, J. Zhou, B. Wang, S. Qu, K. Liu, Effect of BaO on the viscosity and structure of fluorine-free calcium silicate-based mold flux, Journal of Non-Crystalline Solids 542, 120111 (2020). DOI: https://doi.org/10.1016/j.jnoncrysol.2020.120111
  • [19] G.R. Li, Effect of Strong Basic Oxide (Li2O, Na2O, K2O and BaO) on property of CaO-based flux, Journal of Iron and Steel Research International 10 (3), 6-9 (2003). DOI: http://doi.org/10.13228/j.boyuan.issn1006-706x.2003.03.049
  • [20] J. Weng, Development and application of high basicity-high lubrication capacity mold fluxes, Steelmaking 32 (1), 52-54 (2016).
  • [21] B. Zhai, W. Wang, L. Zhang, Study on the properties of mold fluxes for the high speed casting of medium carbon steel, Steelmaking 36 (1), 50-56 (2020).
  • [22] K.C. Mills, M. Hayashi, L.J. Wang, T. Watanabe, The structure and properties of silicate slags, Treatise on Process Metallurgy 1, 149-286 (2014). DOI: http://doi.org/10.1016/b978-0-08-096986-2.00008-4
  • [23] L. Zhu, Q. Wang, Q.Q. Wang, S.D. Zhang, S.P. He, The relationship between crystallization and break temperature of mould flux, Ironmaking & Steelmaking 46 (9), 865-971 (2018). DOI: https://doi.org/10.1080/03019233.2018.1552773
  • [24] Z. Wang, I. Sohn, Effect of substituting CaO with BaO on the viscosity and structure of CaO-BaO-SiO2-MgO-Al2O3 slags, Journal of the American Ceramic Society 101 (9), 4285-4296 (2018). DOI: https://doi.org/10.1111/jace.15559
  • [25] B. Qiu, Study on fluoride-free mold flux of thin slab continuous casting, Xi’an University of Architecture and Technology (2009).
  • [26] H.S. Park, S.S. Park, I. Sohn, The viscous behavior of FeOt -Al2O3-SiO2 copper smelting slags, Metallurgical and Materials Transactions B 42 (4), 692-699 (2011). DOI: https://doi.org/10.1007/s11663-011-9512-7
Uwagi
1. The authors would like to deeply appreciate the fund support from the Natural Science Foundation of Anhui Provincial Education Department (KJ2021A0358) and the College Students Innovation and Entrepreneurship Training Program in Anhui University of Technology (2021008Y).
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3a04fbc-61dc-47ef-8961-ab1d4ab73ef3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.