PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Determination of the Region of no Effect of the Notch on Fatigue Life of AA2519 T62 Aluminium Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a fatigue test of AA2519 T62 aluminium alloy in high-cycles region for smooth and notched specimens with stress concentration factors 1.75 and 2.28 for radii r1 = 2 mm and r2 = 1 mm, respectively. A number of cycles with no notch effect was determined for each notched specimens. The estimated values were compared with the distribution estimated on the literature data. Based on this knowledge, an analytical-experimental method was proposed to determine S-N curves for notched elements for aluminium alloys. The verification of the method gives satisfactory results. Additionally, the FITNET method and the Lee & Taylor method were used for comparison. The proposed method got the best results. The FITNET method and Lee & Taylor method obtained overestimated fatigue life and it can be concluded that the analytical method presented methods are suitable for steel materials. The proposed method can be used by engineers.
Twórcy
autor
  • Bydgoszcz University of Science and Technology, ul. Profesora Sylwestra Kaliskiego 7, 85-796 Bydgoszcz, Poland
  • Bydgoszcz University of Science and Technology, ul. Profesora Sylwestra Kaliskiego 7, 85-796 Bydgoszcz, Poland
Bibliografia
  • 1. Strzelecki P. Analytical method for determining fatigue properties of materials and construction elements in high cycle life (in Polish). [Bydgoszcz]: Uniwersytet Technologiczno-Przyrodniczy w By- dgoszczy. 2014.
  • 2. Lee YL, Paw J, Hathaway, Richard B, Barkey, Mark E. Fatigue Testing and Analysis - Theory and Practice. Elsevier Butterworth–Heinemann. 2005; 417.
  • 3. Fatemi A, Zeng Z, Plaseied A. Fatigue behavior and life predictions of notched specimens made of QT and forged microalloyed steels. Int J Fatigue. 2004; 26: 663–72.
  • 4. Strzelecki P, Correia JA, Sempruch J. Estimation of fatigue S-N curves for aluminium based on tensile strength – proposed method. MATEC Web of Conferences. 2021; 338: 01026.
  • 5. Seyda J, Skibicki D, Pejkowski Ł, Skibicki A, Domanowski P, Maćkowiak P. Mechanical properties and microscopic analysis of sintered rhenium subjected to monotonic tension and uniaxial fatigue. Materials Science and Engineering A. 2021; 817.
  • 6. Bannantine JA, Comer JJ, Handrock JL. Fundamentals of metal fatigue analysis. 1st ed. New Jersey: Pearson. 1989; 288.
  • 7. Stephens RR, Stephens RI, Fuchs HO, Fatemi A. Metal fatigue in engineering. Journal of Engineering Materials and Technology. John Wiley and Sons. 2001; 34.
  • 8. Kocak M, Webster S, Janosch JJ, Ainsworth, RA, Koers R. FITNET Fitness-for-service procedure final draft MK7. 2006.
  • 9. Łagoda T, Robak G, Słowik J. Fatigue life of steel notched elements including the complex stress state. Mater Des [Internet]. 2013 Oct;51:935–42. Available from: https://linkinghub.elsevier.com/retrieve/ pii/S026130691300410X
  • 10. Duparc OH. Alfred Wilm et les débuts du Duralumin. Revue de Metallurgie Cahiers D’Informations Techniques. 2004; 101(5): 353–60.
  • 11. Boroński D, Dzioba I, Kotyk M, Krampikowska A, Pala R. Investigation of the fracture process of explosively welded AA2519-AA1050-Ti6Al4V layered material. Materials [Internet]. 2020 May 13 [cited 2020 Jun 23]; 13(10): 2226. Available from: https://www.mdpi.com/1996-1944/13/10/2226
  • 12. Fisher JJ, Kramer LS, Pickens JR. Aluminum alloy 2519 in military vehicles. Advanced Materials and Processes. 2002; 160(9): 43–6.
  • 13. Kramer LS, Blair TP, Blough SD, Fisher JJ, Pickens JR. Stress-corrosion cracking susceptibility of various product forms of aluminum alloy 2519. J Mater Eng Perform [Internet]. 2002 [cited 2017 Jun 16]; 11(6): 645–50. Available from: http://search. proquest.com/openview/d391cf047b4289bcf4613 2ca208897d4/1?pq-origsite=gscholar&cbl=14822
  • 14. Pawel SJ. Scouting tests to examine potential corrosion of aluminum alloy 2519 during fabrication [Internet]. [cited 2017 Jun 16]. Available from: https:// www.osti.gov/scitech/biblio/304018-TA0rqQ/ webviewable/
  • 15. The Aluminum Association Inc. International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys. The Aluminum Association, Arlington, Virginia. 2006; (April 2006): 28.
  • 16. Davis JR. Aluminum and Aluminum Alloys. Materials Park, Ohio: ASM Hndbook; 1993. 732 p.
  • 17. Vasudevan AK, Doherty RD. Aluminum Alloys: Contemporary Research and Applications. Academic Press. New York: academic press inc. 1989; 728.
  • 18. Liang XP, Li HZ, Huang L, Hong T, Ma B, Liu Y. Microstructural evolution of 2519-T87 aluminum alloy obliquely impacted by projectile with velocity of 816 m/s. Transactions of Nonferrous Metals Society of China (English Edition) [Internet]. 2012; 22(6): 1270–9. Available from: http://dx.doi. org/10.1016/S1003-6326(11)61315-0
  • 19. Gao H, Zhang XM, Li HZ, Liu Y. Microstructure Inhomogeneities in 2519A Aluminum Plate Penetrated by an Incendiary Projectile. Materials Science Forum. 2007; 546–549: 1049–54.
  • 20. Lin Q, Dong W, Li Y, Zhang H, Wang Z. Microstructure simulation of 2519 aluminum alloy in multipass hot compression process. Procedia Eng. 2014; 81: 1259–64.
  • 21. Starke EA, Staley JT. Application of modern aluminum alloys to aircraft. Progress in Aerospace Sciences. 1996; 32(2–3): 131–72.
  • 22. Kosturek R, Śnieżek L, Grzelak K, Torzewski J. Study on the Weldability of AA2519 Armor Grade Aluminium Alloy. Manufacturing Technology [Internet]. 2021; 21(6): 818–23. Available from: https://doi.org/10.21062/mft.2021.093
  • 23. Kosturek R, Śnieżek L, Torzewski J, Wachowski M. Research on the friction stir welding of Sc-modified AA2519 extrusion. Metals (Basel). 2019; 9(10).
  • 24. Kozmel T, Vural M, Tin S. EBSD characterization of shear band formation in aluminum armor alloys. J Mater Sci. 2016; 51(16): 7554–70.
  • 25. Da-xiang S, Xin-ming Z, Ling-ying Y, Xing-hui G, Hai-chun J, Gang G. Comparative study of the dynamic mechanical behavior of aluminum alloy 2519A and 7039. Materials Science and Engineering A [Internet]. 2015; 640: 165–70. Available from: http://dx.doi.org/10.1016/j.msea.2015.05.092
  • 26. Prasad GS, Sharmila T, SrmivasaRao K, Reddy GM. Effect of welding process on microstrnctnre, mechanical properties and corrosion behavior of AA2519 al-alloy. AIP Conf Proc. 2021; 2395(October).
  • 27. Liu Y, Zhang PF, Chen LJ, Zhang H, Zhang XM, Geng ZJ. Effect of pre-precipitation on localized corrosion properties of 2519A aluminum alloy. Cailiao Gongcheng/Journal of Materials Engineering [Internet]. 2014; 6: 11–17. Available from: https://www.scopus.com/inward/record.uri?eid=2- s2.0-84903895163&doi=10.11868%2Fj.issn.1001- 4381.2014.06.003&partnerID=40&md5=113ba428 21b5c8904f063fe9e7b95f1d
  • 28. Ye LY, Wu YP, Jia YZ, Zhang XM, Wu GL. Effects of secondary aging on microstructure and properties of 2519A aluminum alloy. Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals [Internet]. 2014; 24(3): 624–630. Available from: https://www.scopus.com/inward/record.uri?eid=2- s2.0-84899732593&partnerID=40&md5=cc8d10a 1aa03cbdfe5f43400a5b6a86d
  • 29. Li HZ, Liang XP, Wei XY, Wang HJ, Liu HT, Guo FF. Effect of quenching agent on intergranular corrosion resistance of 2519 aluminum alloy. Fenmo Yejin Cailiao Kexue yu Gongcheng/Materials Science and Engineering of Powder Metallurgy [Internet]. 2010; 15(2): 123–128. Available from: https:// www.scopus.com/inward/record.uri?eid=2-s2.0- 77953729826&partnerID=40&md5=68068fc61b7 23ce100a040ebe3b6d706
  • 30. Chen M an, Liu S ying, Li J ming, Cheng N, Zhang X ming. Improvement to corrosion resistance of MAO coated 2519 aluminum alloy by formation of polypropylene film on its surface. Surf Coat Technol [Internet]. 2013; 232: 674–9. Available from: http:// dx.doi.org/10.1016/j.surfcoat.2013.06.073
  • 31. Liu Y, Zhang XM, Zhang H. Role of secondary phase particles of 2519A aluminium alloy in localised corrosion. Materials Research Innovations. 2013; 17(1).
  • 32. Kravcov A, Kluczyński J, Kosturek R, Franek O, Morozov N, Śnieżek L, Svoboda P, Kubeček P. The influence of friction stir welded process parameters of AA2519-T62 on joint quality defined by non-destructive laser amplified ultrasonic method and by microstructure analysis. Challenges to National Defence in Contemporary Geopolitical Situation. 2020; 2020(1): 74–8.
  • 33. Kravcov A, Kosturek R, Śnieżek L, Kluczyński J, Franek O, Morozov N, Maciejewski P. The influence of friction stir welded process parameters of AA2519-T62 on joint quality defined by non-de-structive laser amplified ultrasonic method and by microstructure analysis. Acta Polytechnica. 2020; 60(5): 415–9.
  • 34. Sabari SS, Malarvizhi S, Balasubramanian V. Influences of tool traverse speed on tensile properties of air cooled and water cooled friction stir welded AA2519-T87 aluminium alloy joints. J Mater Process Technol [Internet]. 2016; 237: 286– 300. Available from: http://dx.doi.org/10.1016/j. jmatprotec.2016.06.015
  • 35. Sree Sabari S, Malarvizhi S, Balasubramanian V. Characteristics of FSW and UWFSW joints of AA2519-T87 aluminium alloy: Effect of tool rotation speed. J Manuf Process [Internet]. 2016; 22: 278–89. Available from: http://dx.doi.org/10.1016/j. jmapro.2016.03.014
  • 36. Płonka B, Rajda M, Zamkotowicz Z, Zelechowski J, Remsak K, Korczak P, Szymański W, Śnieżek I. Studies of the aa2519 alloy hot rolling process and cladding with en aw-1050a alloy. Archives of Metallurgy and Materials. 2016; 61(1): 381–8.
  • 37. Zuiko I, Kaibyshev R. Deformation structures and strengthening mechanisms in an Al-Cu alloy subjected to extensive cold rolling. Materials Science and Engineering A. 2017 Aug 15; 702: 53–64.
  • 38. Sun D, Gu G, Ye L, Zhang X. Effect of cold deformation and reaging on microstructures and mechanical properties of 2519A-T87 alloy plate. Zhong- nan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology). 2014; 45(12): 4145–4151.
  • 39. Wu YP, Ye LY, Jia YZ, Liu L, Zhang XM. Precipitation kinetics of 2519A aluminum alloy based on aging curves and DSC analysis. Transactions of Nonferrous Metals Society of China (English Edition). 2014; 24(10): 3076–83.
  • 40. Liu Y, Cheng R, Wang J, Zhang H, Zhang X. Effect of severe plastic deformation at ambient temperature onmicrostructures and mechanical properties of aluminum alloy 2519. Materials Science Forum. 2013; 745–746: 298–302.
  • 41. Zhang XM, Liu L, Ye LY, Liu J, Lei Z, Song JC. Effect of pre-deformation of rolling combined with stretching on stress corrosion of aluminum alloy 2519A plate. Transactions of Nonferrous Metals Society of China (English Edition). 2012; 22(1): 8–15.
  • 42. Wang HM, Xia CQ, Lei P, Wang ZW. Influence of thermomechanical aging on microstructure and mechanical properties of 2519A aluminum alloy. Journal of Central South University of Technology (English Edition). 2011; 18(5): 1349–1353.
  • 43. Wang HM, Xia CQ, Wu LR, Zhou F. Effect of aging temperature on microstructure and mechanical properties of cold-heavy deformed 2519A aluminum alloy. Cailiao Rechuli Xuebao/Transactions of Materials and Heat Treatment. 2011; 32(6): 83–86.
  • 44. Li HZ, Wang HJ, Liang XP, Liu HT, Liu Y, Zhang XM. Hot deformation and processing map of 2519A aluminum alloy. Materials Science and Engineering A. 2011; 528(3): 1548–52.
  • 45. Wang H, Xia C, Lei P, Wang Z. Observation of precipitation phase in thermo-mechanical ageing 2519A aluminum alloy. Tezhong Zhuzao Ji Youse Hejin/Special Casting and Nonferrous Alloys. 2010; 30(11): 1040–1042.
  • 46. Zhang XM, Liu L, Jia YZ. Effects of stretching and rolling pre-deformation on microstructures and mechanical properties of 2519A aluminum alloy. Zhongguo Youse Jinshu Xuebao/Chinese Journal of Nonferrous Metals. 2010; 20(6): 1088–1094.
  • 47. Haynes MJ, Gangloff RP. Elevated temperaturę fracture toughness of AI-Cu-Mg-Ag sheet: Characterization and modeling. Metall Mater Trans A Phys Metall Mater Sci. 1997; 28(9): 1815–29.
  • 48. Kotyk M, Boroński D, Maćkowiak P. The influence of cryogenic conditions on the process of AA2519 aluminum alloy cracking. Materials. 2020; 13(7).
  • 49. Gangloff RP, Haviland JK, Herakovich CT, Pilkey WD, Pindera MJ, Thornton EA, Stoner GE, Swanson RE, Wawner FE, Wert JA. NASA-UVA light aerospace alloy and structures technology program [Internet]. Virginia; 1989 Aug [cited 2020 May 29]. Available from: https://ntrs.nasa.gov/search. jsp?R=19910005161
  • 50. Kosturek R, Torzewski J, Joska Z, Wachowski M, Śnieżek L. The influence of tool rotation speed on the low-cycle fatigue behavior of AA2519-T62 friction stir welded butt joints. Eng Fail Anal. 2022; 142(July).
  • 51. Kosturek R, Slezak T, Torzewski J, Wachowski M, Sniezek L. Study on tensile and fatigue failure in the low-hardness zone of AA2519-T62 FSW joint. Manuf Rev (Les Ulis). 2022; 9.
  • 52. Kosturek R, Śnieżek L, Torzewski J, Ślęzak T, Wachowski M, Szachogłuchowicz I. Research on the properties and low cycle fatigue of Sc-modified AA2519- T62 FSW joint. Materials. 2020; 13(22): 1–18.
  • 53. Kosturek R, Śniezek L, Torzewski J, Wachowski M. Low cycle fatigue properties of sc-modified AA2519-T62 extrusion. Materials. 2020; 13(1).
  • 54. Owolabi GM, Thom M, Ajide O, Kumar N, Azimi A, Whitworth H, Warner G. Fatigue Responses of Three AA 2000 Series Aluminum Alloys. Journal of Materials Science and Chemical Engineering. 2019; 7(3): 32–48.
  • 55. ISO 1099:2017 - Metallic materials — Fatigue testing — Axial force-controlled method. Genewa: International Organization for Standardization; 2017.
  • 56. Noda N. Stress concentration factors for round and flat test specimens with notches. International Journal of Fatigue. 1995; 17: 163–78.
  • 57. Antunes AMBS, Baptista CARP, Barboza MJR, Carvalho ALM, Mogili NVV. Effect of the interrupted aging heat treatment T6I4 on the tensile properties and fatigue resistance of AA7050 alloy. Journal of the Brazilian Society of Mechanical Sciences and Engineering [Internet]. 2019; 41(8): 1–13. Available from: https://doi.org/10.1007/s40430-019-1821-9
  • 58. Benedetti M, Fontanari V, Santus C, Bandini M. Notch fatigue behaviour of shot peened highstrength aluminium alloys: Experiments and predictions using a critical distance method. Int J Fatigue [Internet]. 2010; 32(10): 1600–11. Available from: http://dx.doi.org/10.1016/j.ijfatigue.2010.02.012
  • 59. Chaves V, Beretta G, Balbín JA, Navarro A. Fatigue life and crack growth direction in 7075-T6 aluminium alloy specimens with a circular hole under biaxial loading. Int J Fatigue [Internet]. 2019; 125: 222–36. Available from: https://doi.org/10.1016/j. ijfatigue.2019.03.031
  • 60. Grover HJ, Gordon SA, Jackson LR. The Fatigue of Metals and Structures. 1954.
  • 61. Illg W. Fatigue Tests on Notched and Unnotched Sheet Specimens of 2024 -T3 and 7075 -T6 Aluminum Alloys and of Sae 4130 Steel With Special Consideration of the Life Range From 2 To 10,000 Cycles. Journal of Wound, Ostomy and Continence Nursing [Internet]. 1956; 16(6): 1–41. Available from: https://ntrs.nasa.gov/archive/nasa/casi.ntrs. nasa.gov/19930084699.pdf%5Cnhttp://content. wkhealth.com/linkback/openurl?sid=WKPTLP:la ndingpage&an=00152192-198911000-00004
  • 62. Papuga J, Karkulín A, Hanžl O, Lutovinov M. Comparison of several methods for the notch effect quantification on specimens from 2124-T851 aluminum alloy. Procedia Structural Integrity [Internet]. 2019; 19: 405–14. Available from: https:// doi.org/10.1016/j.prostr.2019.12.044
  • 63. Strzelecki P. Scatter of fatigue life regarding stress concentration factor. Procedia Structural Integrity [Internet]. 2018; 13: 631–5. Available from: https://linkinghub.elsevier.com/retrieve/pii/ S2452321618303391
  • 64. Bennett JA, Weinberg JG. Fatigue notch sensitivity of some aluminum alloys. J Res Natl Bur Stand (1934). 1954; 52(5): 235.
  • 65. Górecki T. Podstawy statystyki z przykladami w R. Wydawnictwo BTC. 2011; 53.
  • 66. Kamys B. Statystyczne Metody Opracowania Pomiarów II. 2007.
  • 67. Rami H, Drissi El Maliani A, El Hassouni M. A Finite Mixture of Weibull-Based Statistical Model for Texture Retrieval in the Complex Wavelet Domain. IEEE Access. 2019; 7: 130144–55.
  • 68. Amalia Yunia Rahmawati. Find minimum of function using genetic algorithm [Internet]. 2020; 1–23. Available from: https://www.mathworks.com/help/ gads/ga.html
  • 69. Alan A. An introduction to categorical data analysis. Second Edi. Statistics in Medicine. New Jersey: John Wiley & Sons, Inc.. 2007; 372.
  • 70. Sempruch J, Strzelecki P, Borowski S, editors. Problemy Rozwoju Maszyn Roboczych. Bydgoszcz: Wydawnictwa Uczelniane Politechnika Bydgoska. 2023; 250.
  • 71. Schijve J. Fatigue of structures and materials. Second. Fatigue of Structures and Materials. Springer Science+Business Media. 2009; 377–380.
  • 72. Smith RA, Miller KJ. Fatigue cracks at notches. Int J Mech Sci. 1977; 19(1): 11–22.
  • 73. Sobczyk K, Spencer BF. Random Fatigue. Random Fatigue. London: Academic Press; 1992.
  • 74. van Zyl G, Al-Sahli A. Failure analysis of conveyor pulley shaft. Case Stud Eng Fail Anal [Internet]. 2013 Apr; 1(2): 144–55. Available from: http://dx. doi.org/10.1016/j.csefa.2013.04.011
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e39cfc0e-3406-49fa-8c26-cc0ae0ebfab4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.