PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Accurate identification on individual similar communication emitters by using HVG-NTE feature

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Individual identification of similar communication emitters in the complex electromagnetic environment has great research value and significance in both military and civilian fields. In this paper, a feature extraction method called HVG-NTE is proposed based on the idea of system nonlinearity. The shape of the degree distribution, based on the extraction of HVG degree distribution, is quantified with NTE to improve the anti-noise performance. Then XGBoost is used to build a classifier for communication emitter identification. Our method achieves better recognition performance than the state-of-the-art technology of the transient signal data set of radio stations with the same plant, batch, and model, and is suitable for a small sample size.
Rocznik
Strony
art. no. e136741
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
autor
  • School of Information and Computer, Anhui Agricultural University, Hefei, Anhui, 230036, China
  • Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, Anhui, 230036, China
  • Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai, 200072, China
autor
  • School of Information and Computer, Anhui Agricultural University, Hefei, Anhui, 230036, China
  • Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, Anhui, 230036, China
autor
  • School of Information and Computer, Anhui Agricultural University, Hefei, Anhui, 230036, China
  • Anhui Provincial Engineering Laboratory for Beidou Precision Agriculture Information, Anhui Agricultural University, Hefei, Anhui, 230036, China
autor
  • School of Information and Computer, Anhui Agricultural University, Hefei, Anhui, 230036, China
Bibliografia
  • [1] J. Dudczyk, “Radar emission sources identification based on hierarchical agglomerative clustering for large data sets”, J. Sens. 2016, 1879327 (2016).
  • [2] G. Manish, G. Hareesh, and M. Arvind, “Electronic Warfare: Issues and Challenges for Emitter Classification”, Def. Sci. J. 201161(3), 228‒234 (2011).
  • [3] J. Dudczyk and A. Kawalec, “Specific emitter identification based on graphical representation of the distribution of radar signal parameters”, Bull. Pol. Acad. Sci. Tech. Sci. 63(2), 391‒396 (2015).
  • [4] Q. Xu, R. Zheng, W. Saad, and Z. Han, “Device Fingerprinting in Wireless Networks: Challenges and Opportunities”, IEEE Commun. Surv. Tutor. 18(1), 94‒104 (2016).
  • [5] P.C. Adam and G.L. Dennis, “Identification of Wireless Devices of Users Who Actively Fake Their RF Fingerprints With Artificial Data Distortion”, IEEE Trans. Wirel. Commun. 14(11), 5889‒5899 (2015).
  • [6] N. Zhou, L. Luo, G. Sheng, and X. Jiang, “High Accuracy Insulation Fault Diagnosis Method of Power Equipment Based on Power Maximum Likelihood Estimation”, IEEE Trans. Power Deliv. 34(4), 1291‒1299 (2019).
  • [7] S. Guo, R.E. White, and M. Low, “A comparison study of radar emitter identification based on signal transients”, IEEE Radar Conference, Oklahoma City, 2018, pp. 286‒291.
  • [8] Q. Wu, C. Feres, D. Kuzmenko, D. Zhi, Z. Yu, and X. Liu, “Deep learning based RF fingerprinting for device identification and wireless security”, Electron. Lett. 54(24), 1405‒1407 (2018).
  • [9] A. Kawalec, R. Owczarek, and J. Dudczyk, “Karhunen-Loeve transformation in radar signal features processing”, International Conference on Microwaves, Krakow, 2006.
  • [10] B. Danev and S. Capkun, “Transient-based identification of wireless sensor nodes”, Information Processing in Sensor Networks, San Francisco, 2009, pp. 25‒36.
  • [11] R.W. Klein, M.A. Temple, M.J. Mendenhall, and D.R. Reising, “Sensitivity Analysis of Burst Detection and RF Fingerprinting Classification Performance”, International Conference on Communications, Dresden, 2009, pp. 641‒645.
  • [12] C. Bertoncini, K. Rudd, B. Nousain, and M. Hinders, “Wavelet Fingerprinting of Radio-Frequency Identification (RFID) Tags”, I IEEE Trans. Ind. Electron. 59(12), 4843‒4850 (2012).
  • [13] Z. Shi, X. Lin, C. Zhao, and M. Shi, “Multifractal slope feature based wireless devices identification”, International Conference on Computer Science and Education, Cambridge, 2015, pp. 590‒595.
  • [14] C.K. Dubendorfer, B.W. Ramsey, and M.A. Temple, “ZigBee Device Verification for Securing Industrial Control and Building Automation Systems”, International Conference on Critical Infrastructure Protection ,Washington DC, 2013, pp. 47‒62.
  • [15] D.R. Reising and M.A. Temple, “WiMAX mobile subscriber verification using Gabor-based RF-DNA fingerprints”, International Conference on Communications, Ottawa, 2012, pp. 1005‒1010.
  • [16] Y. Li, Y. Zhao, L. Wu, and J. Zhang, “Specific emitter identification using geometric features of frequency drift curve”, Bull. Pol. Acad. Sci. Tech. Sci. 66, 99‒108 (2018).
  • [17] Y. Yuan, Z. Huang, H. Wu, and X. Wang, “Specific emitter identification based on Hilbert-Huang transform-based time-frequency-energy distribution features”, IET Commun. 8(13), 2404‒2412 (2014).
  • [18] T.L. Carroll, “A nonlinear dynamics method for signal identification”, Chaos Interdiscip. J. Nonlinear Sci. 17(2), 023109 (2007).
  • [19] D. Sun, Y. Li, Y. Xu, and J. Hu, “A Novel Method for Specific Emitter Identification Based on Singular Spectrum Analysis”, Wireless Communications & Networking Conference, San Francisco, 2017, pp. 1‒6.
  • [20] Y. Jia, S. Zhu, and G. Lu, “Specific Emitter Identification Based on the Natural Measure”, Entropy 19(3), 117 (2017).
  • [21] L. Lacasa, B. Luque, J. Luque, and J.C. Nuno, “The visibility graph: A new method for estimating the Hurst exponent of fractional Brownian motion”, Europhys. Lett. 86(3), 30001‒30005 (2009).
  • [22] M. Ahmadlou and H. Adeli, “Visibility graph similarity: A new measure of generalized synchronization in coupled dynamic systems”, Physica D 241(4), 326‒332 (2012).
  • [23] S. Zhu and L. Gan, “Specific emitter identification based on horizontal visibility graph”, IEEE International Conference Computer and Communications, Chengdu, 2017, pp. 1328‒1332.
  • [24] B. Luque, L. Lacasa, F. Ballesteros, and J. Luque, “Horizontal visibility graphs: Exact results for random time series”, Phys. Rev. E. 80(4), 046103 (2009).
  • [25] W. Jiang, B. Wei, J. Zhan, C. Xie, and D. Zhou, “A visibility graph power averaging aggregation operator: A methodology based on network analysis”, Comput. Ind. Eng. 101, 260‒268 (2016).
  • [26] M. Wajs, P. Kurzynski, and D. Kaszlikowski, “Information-theoretic Bell inequalities based on Tsallis entropy”, Phys. Rev. A. 91(1), 012114 (2015).
  • [27] J. Liang, Z. Huang, and Z. Li, “Method of Empirical Mode Decomposition in Specific Emitter Identification”, Wirel. Pers. Commun. 96(2), 2447‒2461, (2017).
  • [28] A.M. Ali, E. Uzundurukan, and A. Kara, “Improvements on transient signal detection for RF fingerprinting”, Signal Processing and Communications Applications Conference (SIU), Antalya, 2017, pp. 1‒4.
  • [29] Y. Yuan, Z. Huang, H. Wu, and X. Wang, “Specific emitter identification based on Hilbert-Huang transform-based time-frequency-energy distribution features”, IET Commun. 8(13), 2404‒2412 (2014).
  • [30] D.R. Kong and H.B. Xie, “Assessment of Time Series Complexity Using Improved Approximate Entropy”, Chin. Phys. Lett. 28(9), 90502‒90505 (2011).
  • [31] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System”, Knowledge Discovery and Data Mining, San Francisco, 2016, pp. 785‒794.
  • [32] G. Huang, Y. Yuan, X. Wang, and Z. Huang, “Specific Emitter Identification Based on Nonlinear Dynamical Characteristics”, Can. J. Electr. Comp. Eng.-Rev. Can. Genie Electr. Inform. 39(1), 34‒41 (2016).
  • [33] D. Sun, Y. Li, Y. Xu, and J. Hu, “A Novel Method for Specific Emitter Identification Based on Singular Spectrum Analysis”, Wireless Communications and Networking Conference, San Francisco, 2017, pp. 1‒6.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e39a664f-e9c7-4d9b-9cc1-45d97fd95b71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.