PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Green synthesis of Co3O4/graphene nanocomposite as cathode for magnesium batteries

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ultrafine Co3O4 nanoparticles homogeneously attached to graphene sheets by sonochemical method have been demonstrated as a promising cathode material for magnesium batteries. X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) have been employed to characterize the structural properties of this material. SEM analyses clearly confirmed that the Co3O4 nanoparticles have been uniformly coated on the entire surface of graphene sheets to form a compact composite. The Co3O4-graphene nanocomposite was employed as a cathode electrode in magnesium-ion batteries, and their electrochemical properties were briefly investigated. The graphene sheets can also effectively buffer the volume change in Co3O4 upon magnesium insertion/extraction, thus improving the cycling preformance of the composite electrode. It was revealed that the Co3O4-graphene composite can provide a small capacity of 16 mAh·g-1 using a new nonaqueous electrolyte that is tetrahydrofuran-free, which provides a new direction to explore cathode materials for Mg batteries.
Wydawca
Rocznik
Strony
528--533
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
autor
  • Chemistry Department, Faculty of Science, Benha University, Benha, Egypt
autor
  • Physics Department, Faculty of Science, Benha University, Benha, Egypt
Bibliografia
  • [1] GUO Y., ZHANG F., YANG J., WANG F., LI Y., HIRANO S., Energ. Environ. Sci., 5 (2012), 9100.
  • [2] SAHA P., DATTA M., VELIKOKHATNYI O., MANIVANNAN A., ALMAN D., KUMTA P., Prog. Mater. Sci., 66 (2014), 1.
  • [3] SHTERENBERG I., SALAMA M., GOFER Y., LEVI E., AURBACH D., MRS Bull., 39 (2014), 453.
  • [4] YOO H., SHTERENBERQ I., GOFER Y., GERSHINSKY G., POUR N., AURBACH D., Energ. Environ. Sci., 6 (2013), 2265.
  • [5] LEVI E., GOFER Y., AURBACH D., Chem. Mater., 22 (2010), 860.
  • [6] LEVI E., LEVI M., CHASID O., AURBACH D., J. Electroceram., 22 (2009), 13.
  • [7] HA S., LEE Y., WOO S., KOO B., KIM J., CHO J., LEE K., CHOI N., ACS Appl. Mater. Interfaces, 6 (2014), 4063.
  • [8] GU Y., KATSURA Y., YOSHINO T., TAKAGI H., TANIGUCHI K., Sci. Rep., 5 (2015), 12486.
  • [9] AURBACH D., SURESH G., LEVI E., MITELMAN E., MIZRAHI O., CHUSID O., BRUNELLI M., Adv. Mater., 19 (2007), 4260.
  • [10] LI Y., YANG J., LI Y., WANG J., J. Chem. Commun., 46 (2010), 794.
  • [11] TEPAVCEVIC S., XIONG H., STAMENKOVIC R., ZUO X., BALASUBRAMANIAN M., PRAKAPENKA B., JOHNSON C., RAJH T., ACS Nano, 6 (2011), 530.
  • [12] HU Y., LI X., LUSHINGTON A., CAI M., GENG D., BANIS N., LI R., ECS J. Solid State Sci. Technol., 2 (2013), 3034.
  • [13] ZHOU X., WAN J., GUO G., Nanoscale, 4 (2012), 5868.
  • [14] NOVOSELOV K.S., GEIM A.K., MOROZOV S.V., JIANG D., ZHANG Y., DUBONOS S.V., GRIGORIEVA I.V., FIRSOV A.A., Science, 306 (2004), 666.
  • [15] WANG Y., SHI Z., HUANG Y., MA Y., WANG C., CHEN M., CHEN Y., J. Phys. Chem. C, 113 (2009), 13103.
  • [16] STANKVICH S., DIKIN D., DOMMETT G., KOHLHAAS K., ZIMNEY F., STACH E., PINER R., NGUYEN S., RUOFF R., Nature, 442 (2007), 282.
  • [17] YAN J., WEI T., QIAO W., SHAO B., ZHAO Q., ZHANG L., FAN Z., Electrochim. Acta, 55 (2010), 6973.
  • [18] ZHOU W., LIU J., CHEN T., TAN K.S., JIA X., LUO Z., CONG C, YANG H., LI C.M., YU T., Phys. Chem. Chem. Phys., 13 (2011), 14462.
  • [19] PENDASHTEH A., MOUSAVI M., RAHMANIFAR M., Electrochim. Acta, 88 (2013), 347.
  • [20] DENG S., SUN D., WU C., WANG H., LIU J., SUN Y., YAN H., Electrochim. Acta, 111 (2013), 707.
  • [21] DAI X., SHI W., CAI H., LI R., YANG G., Solid State Sci., 27 (2014), 17.
  • [22] IRFAN F., GOO H., KIM D., Appl. Catal. B, 78 (2008), 267.
  • [23] LIN K., CHIU C., TSAI H., Catal. Lett., 88 (2003), 169.
  • [24] ZHENG J., LIU J., LV D., KUANG Q., J. Solid Stat. Chem., 183 (2010), 600.
  • [25] XIONG S., YUAN C., ZHANG X., Chem. Eur. J., 15 (2009), 5320.
  • [26] QING X., LIU S., HUANG K., Electrochim. Acta, 56 (2011), 4985.
  • [27] LANG J., YAN X., XUE Q., J. Power Sources, 196 (2011), 7841.
  • [28] WU S., REN W., WEN L., GAO L., ZHA J., ACS Nano, 4 (2010), 3187.
  • [29] WANG B., WANG Y., PARK J., AHN H., WANG G., J. Alloy. Compd., 509 (2011), 7778.
  • [30] YAN J., WEI T., QIAO W., SHAO B., ZHAO Q., ZHANG L., FAN Z., Electrochim. ACTA, 55 (2010), 6973.
  • [31] NASSAR M., Mater. Lett., 94 (2013), 112.
  • [32] DONG X., XU H., WANG X., HUANG Y., CHAN-PARK M.B., ZHANG H., WANG L., HUANG W., CHEN P., ACS Nano, 6 (2013), 3206.
  • [33] EZEIGWE E., TAN M., KHIEW P., SIONG C., Cream. Int., 41 (2015), 715.
  • [34] WANG X., LIU S., WANG H., FANG D., LI Y., J. Solid State El., 16 (2012), 3593.
  • [35] JENKINS R., SNYDER R., Chemical Analysis: Introduction to X-ray Power Diffractometry, Willy, New York, 1996.
  • [36] SU S., HUANG Z., NULI Y., TUERXUN F., YANG J., WANG J., Chem. Commun., 51 (2015), 2641.
  • [37] DU X., HUANGAC G., QIN Y., WANG L., RSC Adv., 5 (2015) 76352.
  • [38] VINAYAN B., ZHAO-KARGER Z., DIEMANT T., CHAKRAVADHANULA V., SCHWARZBURGER N., CAMBAZ M., BEHM R., KÜBEL C., FICHTNER M., Nanoscale, 8 (2016), 3296.
  • [39] HE D., WU D., GAO J., WU X., ZENG X., DING W., J. Power Sources, 294 (2015), 643.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e38f68e9-679b-4416-84fe-2b1d7753f74c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.