PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessing the sensitivity of riparian algarrobo dulce (Prosopis flexuosa DC) radial growth to hydrological changes

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ecotones, as for example riparian zones, have long interested ecologists, due to their potential role in generating species biodiversity and evolutionary novelty, as well as their sensitivity to environmental changes. Along riparian areas, vegetation is recognized for its ecological importance in several ecosystemic processes. In the Central Monte Desert (central-west Argentina), Prosopis flexuosa grows in territories characterized by a permanent access to water reservoirs, e.g. along riverbanks, where the species forms the classic gallery forests. Despite the ecosystemic role of the different Prosopis species distributed in arid lands, thus far no analysis has been conducted regarding the relation between their radial growth and hydrological changes, namely streamflow variability, in riparian settings. To fill this gap of knowledge, we performed a dendrochronological analysis considering several riparian P. flexuosa trees differing in their spatial position in relation to the riverbank. Pointer years, correlation function, and regression analyses show differences in the dendrohydrological signal of the studied species, probably function of tree distance from the river. In this sense, radial growth of trees distributed near the riverbank is tightly coupled to spring-summer (September to March) streamflow variability, whereas for farthest trees the ring development is driven by a combination of winter and spring river discharge and late-summer precipitation amount. The presented results demonstrate the potentiality of P. flexuosa, and in a broader sense of the Prosopis genus, in dendrohydrological studies.
Wydawca
Czasopismo
Rocznik
Strony
1--8
Opis fizyczny
Bibliogr. 53 poz., rys.
Twórcy
  • Laboratorio de Dendrocronología e Historia Ambiental, IANIGLA, CCT-CONICET-Mendoza, Av. Ruiz Leal s/n, Parque Gral. San Martín, CC 330, PO Box 5500 Mendoza, Argentina
autor
  • Laboratorio de Dendrocronología e Historia Ambiental, IANIGLA, CCT-CONICET-Mendoza, Av. Ruiz Leal s/n, Parque Gral. San Martín, CC 330, PO Box 5500 Mendoza, Argentina
Bibliografia
  • 1. Abraham E, del Valle HF, Roig F, Torres L, Ares JO, Coronato F, Godagnone R, 2009. Overview of the geography of the Monte Desert biome (Argentina). Journal of Arid Environments 73(2): 144– 153, DOI 10.1016/j.jaridenv.2008.09.028.
  • 2. Bagnouls F and Gaussen H, 1953. Saison sèche et indice xérothermique (Dry season and xerothermic index). Bulletin de la Société d'histoire naturelle de Toulouse 88: 193–240.
  • 3. Biondi F and Waikul K, 2004. DENDROCLIM2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers & Geosciences 30(3): 303–311, DOI 10.1016/j.cageo.2003.11.004.
  • 4. Blasing TJ, Solomon AM and Duvick DN, 1984. Response functions revisited. Tree-Ring Bulletin 44: 1–15.
  • 5. Boulanger JP, Martinez F and Segura EC, 2006. Projection of future climate change conditions using IPCC simulations, neural networks and Bayesian statistics. Part 1: Temperature mean state and seasonal cycle in South America. Climate Dynamics 27(2–3): 233– 259, DOI 10.1007/s00382-006-0134-8.
  • 6. Burnham KP and Anderson DR, 2002. Model selection and multimodel inference: a practical information-theoretic approach. Springer Science & Business Media.
  • 7. Chhin S, Chumack K, Dahl T, David ET, Kurzeja P, Magruder M and Telewski FW, 2013. Growth-climate relationships of Pinus strobus in the floodway versus terrace forest along the banks of the Red Cedar River, Michigan. Tree-Ring Research 69(2): 37–47, DOI 10.3959/1536-1098-69.2.37.
  • 8. Clements FE, 1905. Research methods in ecology. University Publishing Company.
  • 9. Cook ER, 1985. A time series analysis approach to tree ring standardization. PhD Thesis, Lamont-Doherty Geological Observatory, New York.
  • 10. Cook ER, 1987. The decomposition of tree-ring series for environmental studies. Tree-Ring Bulletin 47: 37–59.
  • 11. Cook ER and Krusic PJ, 2006. ARSTAN 41: a tree-ring standardization program based on detrending and autoregressive time series modeling, with interactive graphics. Tree-Ring Laboratory, Lamont Doherty Earth Observatory of Columbia University, New York.
  • 12. Cropper JP, 1979. Tree-ring skeleton plotting by computer. Tree-Ring Bulletin 39:47–59.
  • 13. Dudek DM, McClenahen JR and Mitsch WJ, 1998. Tree growth responses of Populus deltoides and Juglans nigra to streamflow and climate in a bottomland hardwood forest in central Ohio. The American midland naturalist 140(2): 233–244.
  • 14. Farina A, 2008. Principles and methods in landscape ecology: towards a science of the landscape (Vol. 3). Springer Science & Business Media.
  • 15. Goirán SB, Aranibar JN, and Gomez ML, 2012. Heterogeneous spatial distribution of traditional livestock settlements and their effects on vegetation cover in arid groundwater coupled ecosystems in the Monte desert (Argentina). Journal of Arid Environments 87: 188– 197, DOI 10.1016/j.jaridenv.2012.07.011
  • 16. Kark S, 2013. Ecotones and ecological gradients. In Ecological Systems (pp. 147–160). Springer New York.
  • 17. Fritts HC, 1976. Tree Rings and Climate. Academic Press, London.
  • 18. Giantomasi MA, Roig Juñent FA, Villagra PE and Srur AM, 2009. Annual variation and influence of climate on the ring width and wood hydrosystem of Prosopis flexuosa DC trees using image analysis. Trees 23: 117–126, DOI 10.1007/s00468-008-0260-5.
  • 19. Giantomasi MA, Roig-Juñent F, Patón-Domínguez D and Massaccesi G, 2012. Environmental modulation of the seasonal cambial activity in Prosopis flexuosa DC trees from the Monte woodlands of Argentina. Journal of Arid Environments 76: 17–22, DOI 10.1016/j.jaridenv.2011.08.010.
  • 20. Giantomasi MA, Roig-Juñent FA and Villagra PE, 2013. Use of differential water sources by Prosopis flexuosa DC: a dendroecological study. Plant Ecology 214(1): 11–27, DOI 10.1007/s11258-012- 0141-2.
  • 21. Gonzalez IG, 2001. Weiser: a computer program to identify event and pointer years in dendrochronological series. Dendrochronologia 19(2): 239–244.
  • 22. Guiot J, 1991. The bootstrapped response function. Tree-Ring Bulletin 51: 39–41.
  • 23. Helama S, Arentoft BW, Collin-Haubensak O, Hyslop MD, Brandstrup CK, Mäkelä HM, Tian Q and Wilson R, 2013. Dendroclimatic signals deduced from riparian versus upland forest interior pines in North Karelia, Finland. Ecological Research 28(6): 1019–1028, DOI 10.1007/s11284-013-1084-3.
  • 24. Heuzé P, Dupouey JL and Schnitzler A, 2009. Radial growth response of Hedera helix to hydrological changes and climatic variability in the Rhine floodplain. River Research and Applications 25(4): 393– 404, DOI 10.1002/rra.1165.
  • 25. Holmes RL, 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43: 69–78.
  • 26. Iglesias MR, 2010. Evaluación de la vegetación leñosa como depósito de carbono en un gradiente Árido—Semiárido Argentino (Evaluation of woody vegetation as carbon sink in an Argentinean AridSemiarid gradient). Doctoral dissertation, Universidad Nacional de Córdoba, Argentina (in Spanish).
  • 27. IPCC WG I, 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M and Miller HL, eds, Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
  • 28. Jobbágy EG, Nosetto MD, Villagra PE and Jackson RB, 2011. Water subsidies from mountains to deserts: their role in sustaining groundwater-fed oases in a sandy landscape. Ecological Applications 21(3): 678–694, DOI 10.1890/09-1427.1.
  • 29. Mazerolle MJ and Mazerolle MMJ, 2015. Package ‘AICcmodavg’.
  • 30. Morello J, 1958. La Provincia Fitogeográfica del Monte (The Monte Phytogeographical Province). Tucumán: Opera Lilloana II, 155pp (in Spanish).
  • 31. Naiman RJ and Décamps H, 1997. The ecology of interfaces: riparian zones. Annual Review of Ecology and Systematics 28: 621–658, DOI 10.1146/annurev.ecolsys.28.1.621.
  • 32. Odum EP, 1953. Fundamentals of ecology. W.B. Saunders, Philadelphia.
  • 33. Odum EP, Finn JT and Franz EH, 1979. Perturbation theory and the subsidy-stress gradient. BioScience 29(6): 349–352.
  • 34. Palta MM, Doyle TW, Jackson CR, Meyer JL and Sharitz RR, 2012. Changes in diameter growth of Taxodium distichum in response to flow alterations in the Savannah River. Wetlands 32(1): 59–71, DOI 10.1007/s13157-011-0245-9.
  • 35. Piraino S, Abraham EM, Diblasi A and Roig-Juñent FA, 2015. Geomorphological-related heterogeneity as reflected in tree growth and its relationships with climate of Monte Desert Prosopis flexuosa DC woodlands. Trees 29(3): 903–916, DOI 10.1007/s00468- 015-1173-8.
  • 36. R Development Core Team, 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.Rproject.org/.
  • 37. Rodríguez-González PM, Stella JC, Campelo F, Ferreira MT and Albuquerque A, 2010. Subsidy or stress? Tree structure and growth in wetland forests along a hydrological gradient in Southern Europe. Forest Ecology and Management 259(10): 2015–2025, DOI 10.1016/j.foreco.2010.02.012.
  • 38. Rodríguez-González PM, Campelo F, Albuquerque A, Rivaes R, Ferreira T and Pereira JS, 2014. Sensitivity of black alder (Alnus glutinosa [L.] Gaertn.) growth to hydrological changes in wetland forests at the rear edge of the species distribution. Plant Ecology 215(2): 233–245, DOI 10.1007/s11258-013-0292-9.
  • 39. Sakamoto Y, Ishiguro M and Kitagawa G, 1986. Akaike information criterion statistics. Dordrecht, The Netherlands: D. Reidel.
  • 40. Salemi LF, Groppo JD, Trevisan R, de Moraes JM, de Paula Lima W and Martinelli LA, 2012. Riparian vegetation and water yield: A synthesis. Journal of Hydrology 454–455: 195–202, DOI 10.1016/j.jhydrol.2012.05.061.
  • 41. Schweingruber FH, Eckstein D, Serre-Bachet F and Bräker OU, 1990. Identification, presentation and interpretation of event years and pointer years in dendrochronology. Dendrochronologia 8: 9–38.
  • 42. Smith TB, Wayne RK, Girman DJ and Bruford MW, 1997. A role for ecotones in generating rainforest biodiversity. Science 276(5320): 1855–1857, DOI 10.1126/science.276.5320.1855.
  • 43. Snyder KA and Williams DG, 2000. Water sources used by riparian trees varies among stream types on the San Pedro River, Arizona. Agricultural and Forest Meteorology 105(1): 227–240, DOI 10.1016/S0168-1923(00)00193-3.
  • 44. Stokes MA and Smiley TL, 1968. An introduction to tree-ring dating. University of Arizona Press.
  • 45. Stromberg JC, Wilkins SD and Tress JA, 1993. Vegetation-hydrology models: implications for management of Prosopis velutina (velvet mesquite) riparian ecosystems. Ecological Applications 3(2): 307– 314, DOI 10.2307/1941833.
  • 46. Stromberg JC and Patten DT, 1996. Instream flow and cottonwood growth in the eastern Sierra Nevada of California, USA. Regulated Rivers: Research & Management 12(1): 1–12.
  • 47. Tardif J and Bergeron Y, 1993. Radial growth of Fraxinus nigra in a Canadian boreal floodplain in response to climatic and hydrological fluctuations. Journal of Vegetation Science 4(6): 751–758, DOI 10.2307/3235611.
  • 48. Vich AIJ, Norte FA and Lauro C, 2014. Análisis regional de frecuencias de caudales de ríos pertenecientes a cuencas con nacientes en la cordillera de Los Andes (Regional flow frequency analysis of river basin with headwaters at the Andes cordillera). Meteorologica 39(1): 3–26 (in Spanish).
  • 49. Villagra PE, Defossé GE, Del Valle HF, Tabeni S, Rostagno M, Cesca E and Abraham E, 2009. Land use and disturbance effects on the dynamics of natural ecosystems of the Monte Desert: Implications for their management. Journal of Arid Environments 73(2): 202– 211, DOI 10.1016/j.jaridenv.2008.08.002.
  • 50. Villagra PE, Vilela A, Giordano C and Alvarez JA, 2010. Ecophisiology of Prosopis species from the arid land of Argentina: What do we know about adaptation to stressful environments? In: Ramawat K.G. (Ed.), Desert Plant, Biology and Biotechnology. SpringerVerlag, Berlin, Heidelberg.
  • 51. Villalba R, 1985. Xylem structure and cambial activity in Prosopis flexuosa DC. IAWA Bulletin 6: 119–130, DOI 10.1163/22941932- 90000923.
  • 52. llalba R and Veblen TT, 1997. Spatial and temporal variation in Austrocedrus growth along the forest-steppe ecotone in northern Patagonia. Canadian Journal of Forest Research 27: 580–597, DOI 10.1139/x96-209.
  • 53. Wigley TML, Briffa KR and Jones PD, 1984. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. Journal of Climate and Applied Meteorology 23(2): 201–213, DOI 10.1175/1520- 0450(1984)0232.0.CO;2.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e38d190f-7e8b-4d27-9e40-2a140cee623f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.