PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Areas of Investigation into Air Intake Systems for the Impact on Compressor Performance Stability in Aircraft Turbine Engines

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The high demands placed on aircraft turbine engines necessitate the use of the latest engine compressors which must be increasingly efficient and more robust due to the increased loads. The key safety issue in this context is to ensure compressor stability over all engine speed ranges and aircraft flight regimes. This paper presents selected areas of research into surge and stall of axial compressors used in aircraft turbine engines based on scientific publications in recent years. On the basis of the analysed literature the authors defined the main research areas into compressor surge, namely: air intake research, compressor research and combined air intake and compressor system research. On the background of the conducted analysis the authors has presented their own areas of research. The aim of this work is to search for an intake-compressor design more passively resistant to stall or surge phenomena without necessity of implementation of complex control systems to prevent compressor stall.
Twórcy
  • Faculty of Mechatronics, Armament and Aerospace, Military University of Technology, 2 Gen. S. Kaliskiego Street, 00-908 Warsaw, Poland
  • Faculty of Mechatronics, Armament and Aerospace, Military University of Technology, 2 Gen. S. Kaliskiego Street, 00-908 Warsaw, Poland
  • Faculty of Mechatronics, Armament and Aerospace, Military University of Technology, 2 Gen. S. Kaliskiego Street, 00-908 Warsaw, Poland
Bibliografia
  • 1. Balicki W., Chachurski R., Kawalec K., Kozakiewicz A., Szczeciński S. Unstable work of turbine engines reasons of occurrence and ways of prevention (in Polish). Transactions on Aerospace Research. 2010; 199: 50–55.
  • 2. Kozakiewicz A., Kowalski M. Unstable operation of the turbine aircraft engine. Journal of Theoretical and Applied Mechanics. 2013; 51: 719–727.
  • 3. Askari R., Soltani M.R., Mostoufi K., Abedi M., Fard A.K. Angle of Attack Investigations on the Performance of a Diverterless Supersonic Inlet. Journal of Applied Fluid Mechanics. 2019; 12(6): 2017–2030.
  • 4. Kozakiewicz A., Frant M. Analysis of the gust impact on inlet vortex formation of the fuselageshielded inlet of an jet engine powered aircraft. Journal of Theoretical and Applied Mechanics. 2013; 51(4): 993–1002.
  • 5. Kozakiewicz A., Frant M., Majcher M. Impact of the intake vortex on the stability of the turbine jet engine intake system. International Review of Aerospace Engineering. 2021; 14: 173–180.
  • 6. Bednarz A. Evaluation of Material Data to the Numerical Strain-Life Analysis of the Compressor Blade Subjected to Resonance Vibrations. Advances in Science and Technology Research Journal. 2020; 14(1): 184–190.
  • 7. Kozakiewicz A., Grzejszczak O. An Influence of Geometrical Parameters of the Lock of the BladeDisc Joint on Stress in the FEA and DIC Methods. Advances in Science and Technology Research Journal. 2021; 15(1): 209–217.
  • 8. Kozakiewicz A., Kieszek R., Rogólski R. Optimization of a Jet Engine Compressor Disc with Application of Artificial Neural Networks for Calculations Related to Time and Mass Criteria. Advances in Science and Technology Research Journal. 2021: 15(2): 208–218.
  • 9. Muchowski R., Gubernat S. Influence of axial compressor model simplification and mesh density on surge margin evaluation. Advances in Science and Technology Research Journal. 2021; 15 (3): 243–253.
  • 10. Kawalec K., Balicki W., Chachurski R., Głowacki P., Kozakiewicz A., Szczeciński J., Szczeciński S. Aircraft propulsion systems. Part1 (in Polish). Military University of Technology; 2009.
  • 11. Harjesn L., Bode Ch., Gruber J., Frantzheld Ph., Koch P., Friedrichs J. Investigation of jet engine intake distortions caused by crosswind conditions. Journal of the Global Power and Propulsion Society. 2020; 4: 48–62.
  • 12. Kalsi H.S., Tucker P.G. Numerical modelling of shock wave boundary layer interactions in aero-engine intakes at incidence. In: Proc. of ASME Turbo Expo 2018 Turbomachinery Technical Conference and Exposition GT2018, Oslo, Norway 2018.
  • 13. Wakelam Ch.T., Hynes T.P., Hodson H.P., Evans S.W., Chanez Ph. Separation Control for Aeroengine Intakes, Part 1: Low-Speed Investigation of Control Strategies. Journal of Propulsion and Power. 2012; 28 (4): 766–772.
  • 14. Savelyevn A., Mikhayolv S.V., Zlenko N.A. Aerodynamic inlet design for civil aircraft nacelle. In: Proc. of 29th Congress of the International Council of the Aeronautical Sciences, Petersburg, Russia 2014.
  • 15. Heath Ch.M., Slater J.W., Rallabhandi S.K. Inlet trade study for a low-boom aircraft demonstrator. Journal of Aircraft. 2017; 54 (4): 1–11. https://doi. org/10.2514/1.C034036.
  • 16. Afzal A.A., Safdar M.M., Javed A. Performance analysis of a proposed design of diverterless supersonic inlet at various flight conditions. AIAA SciTech 2021 Forum. https://arc.aiaa.org/doi/ pdf/10.2514/6.2021-0242
  • 17. Montes R.A., Chandler F.O. A CFD Investigation of a diverterless supersonic inlet of ellipsoidal entrance shape. AIAA Propulsion and Energy 2019 Forum. https://arc.aiaa.org/doi/book/10.2514/MPEF19.
  • 18. Saheby E.B., Xing S., Hays A.P. Design and performance study of a parametric diverterless supersonic inlet. Proceedings of the Institution of Mechanical Engineers. Part G. Journal of Aerospace Engineering. 2020; 234(2): 470–489.
  • 19. MacManus D.G., Chiereghin N., Prieto D.G., Zachos P. Complex aeroengine intake ducts and dynamic distortion. AIAA Journal. 2017; 55(7). https://doi.org/10.2514/1.J054905.
  • 20. Tanguy G., Macmanus D., Garnier E., Martin P. Characteristics of unsteady total pressure distortion for a complex aero-engine intake duct. Aerospace Science and Technology. 2018; 78: 297–311.
  • 21. Bravo-Mosquera P.D., Abdalla A.M., Cerón-Muñoz H.D., Catalano F.M. Integration assessment of conceptual design and intake aerodynamics of a nonconventional air-to-ground fighter aircraft. Aerospace Science and Technology. 2019; 86: 497–519.
  • 22. Hewkin-Smith M., Pullan G., Grimshaw S.D., Greitzer E.M., Spakovszky Z.S. The role of tip leakage flow in spike type rotating stall inception. Journal of Turbomachinery. 2019; 141(6): 061010. https:// doi.org/10.1115/1.4042250.
  • 23. Kawase M., Rona A. Numerical optimization of a stall margin enhancing recirculation channel for an axial compressor. Fluids. 2019; 4(2), 88. https:// doi.org/10.3390/fluids4020088.
  • 24. Liu B., Qiu Y., An G., Yu X. Experimental investigation of the flow mechanisms and the performance change of a highly loaded axial compressor stage with/without stator hub clearance. Applied Sciences. 2019; 9(23), 5134. https://www.mdpi. com/2076-3417/9/23/5134.
  • 25. Dvirnyk Y., Pavlenko D., Przysowa R. Determination of serviceability limits of a turboshaft engine by the criterion of blade natural frequency and stall margin. In: Proc. of 9th EASN International Conference on Innovation in Aviation & Space, MATEC Web Conference, Athens, Greece 2019.
  • 26. Popov G., Baturin O., Goriachkin E., Zubanov V., Volkov A. Axial compressor optimization method. In: Proc. of 4th International Conference on Mechanical System and Control Engineering, Moscow, Russia 2020.
  • 27. Przysowa R., Russhard P., Wachlaczenko M. Using blade tip timing and pressure data to characterise compressor stall and surge. Proceedings of ASME Turbo Expo 2020 Turbomachinery Technical Conference and Exposition GT2020, London, England 2020.
  • 28. Kim S., Pullan G., Hall C.A., Grewe R.P., Wilson M.J., Gunn E. Stall inception in low pressure ratio fans. Journal of Turbomachinery. 2019; 141(7). https://doi.org/10.1115/1.4042731.
  • 29. Margalida G., Pierric J., Roussette O., Dazin A. Comparison and sensibility analysis of warning parameters for rotating stall detection in an axial compressor. Intern. Journal of Turbomachinery Propulsion and Power. 2020; 5(3): 16. https:// www.mdpi.com/2504-186X/5/3/16.
  • 30. Lia J., Du J., Liu Y., Zhanga H., Nie C. Effect of inlet radial distortion on aerodynamic stability in a multi-stage axial flow compressor. Aerospace Science and Technology. 2020; 105: 105886. https:// doi.org/10.1016/j.ast.2020.105886.
  • 31. Sohail M.U., Elahi H., Islam A., Hamdani H.R., Parvez K., Swati R.F. CFD analysis on the effects of distorted inlet flows with variable RPM on the stability of the transonic micro-compressor. Microsystem Technologies. 2021; 27: 3811–3827.
  • 32. Frederic N., Davis M. Investigation of the effects of inlet swirl on compressor performance and operability using a modified parallel compressor model. In Proc.: of ASME Turbo Expo 2011 GT2011, June 6–10, Vancouver, Canada 2011.
  • 33. Allen G. Air efficiency concepts. KDC Resource. 2021. Available from https://www.kdcresource. com/blog/2019/07/air-efficiency-concepts.
  • 34. Hall D. K., Greitzer E. M., Tan C. S. Analysis of fan stage conceptual design attributes for boundary layer ingestion. Journal of Turbomachinery. 2017; 139(7). http://hdl.handle.net/1721.1/114790.
  • 35. Kim S., Pullan G., Hall C.A., Grewe R.P., Wilson M. J., Gunn E. Stall inception in low pressure ratio fans. Journal of Turbomachinery. 2019; 141(7): 071005. https://doi.org/10.1115/1.4042
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e387aedb-f2d6-48c1-b24d-6d477302f573
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.