PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Activated bio-carbons prepared by physical activation of residues after supercritical extractionof raw plants

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A series of activated bio-carbons has been obtained by physical activation of residues after supercritical extraction of blackberries, raspberries and blackcurrants. The effects of different temperatures of activation and different starting materials on the physicochemical and sorption properties of the bio-carbon samples obtained were evaluated. The physicochemical properties of the activated bio-carbons were characterized by elementary analysis, low-temperature nitrogen sorption and Boehm titration. All materials were tested as adsorbents of pollutants from gas (nitrogen dioxide) and liquid (iodine, methylene blue) phase. The sorption properties of the activated bio-carbons were tested at 23°C. The materials obtained were activated bio-carbons of surface area ranging between 303 and 442 m2/g and showing basic character of the surface. The content of elemental carbon in the obtained samples was in the range of 73.4-82.1 wt. %. The maximum adsorption capacities of the materials towards nitrogen dioxide were 65 mg/g, methylene blue -207 mg/g, and iodine 1001 mg/g. According to the adsorption tests towards nitrogen dioxide, the sorption capacities of the adsorbents studied were increased if a mixture of nitrogen dioxide and air had a humidity of 70 %. The mechanism of methylene blue adsorption involved the formation of adsorptive multilayer. The most effective adsorbent of organic and inorganic pollutants proved to be the activated bio-carbon obtained from the residues after supercritical extraction of blackcurrants.
Rocznik
Strony
1357--1365
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr., wz.
Twórcy
  • Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
  • Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
Bibliografia
  • ANASTAS, P. T., WARNER, J. C., 1998. Green Chemistry: Theory and Practice, Oxford University Press, London.
  • BANSAL, R. C., GOYAL, M., 2005. Activated Carbon Adsorption, Taylor & Francis Group, Boca Raton.
  • BASHKOVA, S., BANDOSZ, T. J., 2009. The effects of urea modification and heat treatment on the process of NO2 removal by wood-based activated carbon. J. Colloid Interf. Sci. 333, 97-103.
  • BAZAN, A., NOWICKI, P., PIETRZAK, R., 2016. Removal of NO2 by carbonaceous adsorbents obtained from residue after supercritical extraction of marigold. Adsorption 22(4), 465-471.
  • BAZAN-WOZNIAK, A., NOWICKI, P., PIETRZAK, R., 2017. The influence of activation procedure on the physicochemical and sorption properties of activated carbons prepared from pistachio nutshells for removal of NO2/H2S gases and dyes. J. Clean. Prod. 152, 211-222.
  • BAZAN-WOZNIAK, A., NOWICKI, P., PIETRZAK, R., 2019. The effect of demineralization on the physicochemical and sorption properties of activated bio-carbons. Adsorption 25, 337-343.
  • BOEHM, H. P., 1994. Some aspects of the surface chemistry of carbon blacks and other carbons. Carbon 32, 759-69.
  • CAPUZZO, A., MAFFEI, M. E., 2013. Supercritical fluid extraction of plant flavors and fragrances. Molecules 18, 7194-7238.
  • DEL VALLE, J. M., 2015. Extraction of natural compounds using supercritical CO2: Going from the laboratory to the industrial application. J. Supercrit. Fluid. 96, 180-199.
  • FREUNDLICH, H. M. F., 1906. Over the Adsorption in Solution. J. Phys. Chem. 57, 385-470.
  • GONZÁLEZ, P., 2018. Activated carbon from lignocellulosicsprecursors: A review of the synthesis methods, characterization techniques and applications. Renew. Sust. Energ. Rev. 82, 1393-1414.
  • JIANG, W., XIANG, X., LI, S., ZHANG, X., 2019. Synthesis, characterization and machine learning based performance prediction of straw activated carbon. J. Clean. Prod. 212, 1210-1223.
  • KARADIREK, S., OKKAY, H., 2018. Statistical modeling of activated carbon production from spent mushroom compost. J. Ind. Eng. Chem. 63, 340-347.
  • KAŹMIERCZAK-RAŹNA, J., PÓLROLNICZAK, P., WASIŃSKI, K., PIETRZAK, R., NOWICKI, P., 2019. Comparison of physicochemical, sorption and electrochemical properties of nitrogen-doped activated carbons obtained with the use of microwave and conventional heating. Adsorption 25, 405-417.
  • KURAMOCHI, T., RAMIREZ, A., TURKENBURG, W., FAAIJ, A., 2012. Effect of CO2 capture on the emissions of air pollutants from industrial processes. Int. J. Greenh. Gas Con. 10, 310-328.
  • LANDAU, D., NOVACK, L., YITSHAK-SADE, M., SAROV. B., KLOOG, I., HERSHKOVITZ, R., GROTTO, I., KARAKIS, I., 2015. Nitrogen Dioxide pollution and hazardous household environment: what impacts more congenital malformations. Chemosphere 139, 340-348.
  • LANGMUIR, I., 1918. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361-1403.
  • MARSH, H., RODRIGUEZ-REINOSO F., 2006. Production and Reference Material, [w]: Activated carbon, Elsevier Ltd.
  • MILLAO, S., UQUICHE, E., 2016. Extraction of oil and carotenoids from pelletized microalgae using supercritical carbon dioxide. J. Supercrit. Fluid. 116, 223-231.
  • NOWICKI, P., SUPŁAT, M., PRZEPIÓRSKI, J., PIETRZAK, R., 2012. NO2 removal on adsorbents obtained by pyrolysis and physical activation of corrugated cardboard. Chem Eng. J. 195-196, 7-14.
  • PIETRZAK, R., BANDOSZ, T.J., 2007. Reactive adsorption of NO2 at dry conditions on sewage sludge-derived materials. Environ. Sci.Technol. 41, 7516-7522
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e383eb77-1678-485a-a3bb-34f97f656d7a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.