PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ritz solution of the Helmholtz equation in a stadium-shaped domain with zero normal derivatives – applications to fluid sloshing and thermo-convective stability

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The eigenvalues and eigenfunctions of the Helmholtz equation with Neumann conditions are obtained for the stadium-shaped domain. The variational Ritz method is found to be accurate and efficient in determining these eigenvalues and eigenfunctions. The eigenfunctions show the evolution and switching of mode shapes from a long rectangular strip to a circle. These new results are applied to the sloshing of a liquid in a tank, and to the onset of thermo-convective stability in a confined porous layer.
Rocznik
Strony
471--483
Opis fizyczny
Bibliogr. 25 poz., rys.
Twórcy
autor
  • Departments of Mathematics and Mechanical Engineering Michigan State University East Lansing, MI 48824, U.S.A.
Bibliografia
  • 1. J.W.S. Rayleigh, The Theory of Sound, 2nd ed., Dover, New York, 1945.
  • 2. C.Y. Wang, C.M. Wang, Structural Vibration, CRC Press, Boca Raton, Florida, 2014.
  • 3. R.F. Harrington, Time-Harmonic Electromagnetic Fields, Wiley, New York, 2001.
  • 4. P. Lagasse, J. van Bladel, Square and rectangular waveguides with rounded corners, IEEE Transactions, 20, 5, 331–337, 1972.
  • 5. Z. Shen, X. Lu, Modal analysis of a rectangular waveguide with rounded sides, Microwave and Optical Technology Letters, 33, 365–368, 2001.
  • 6. N. Don, A. Kirilenko, A. Poyedinchuk, V. Tkachenko, Calculation of cutoff wave numbers in the waveguides of rectangular cross section with rounded corners, International Conference on Antenna Theory and Technique, Sevastopol, Ukraine, pp. 779–781, 2003.
  • 7. J.A. Ruiz-Cruz, J.M. Rebollar, Eigenmodes of waveguides using a boundary contour mode-matching method with an FFT scheme, International Journal of RF and Microwave Computer Aided Engineering, 15, 286–295, 2005.
  • 8. K. Rektorys, Variational Methods in Mathematics, Science and Engineering, Reidel, Dordrecht, 1980.
  • 9. P.M. Morse, H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, New York, 1953.
  • 10. R. Weinstock, Calculus of Variations, McGraw-Hill, New York, 1952.
  • 11. H. Lamb, Hydrodynamics, Dover, New York, 1945.
  • 12. J.W.S. Rayleigh, On waves, Philosophical Magazine (5) 1: 257–259, 1876 (in Scientific Papers, vol. 1).
  • 13. H. Jeffreys, The free oscillations of water in an elliptic lake, Proceedings of the London Mathematical Society, s2-23, 1, 455–476, 1925.
  • 14. J. Proudman, On the tides in a flat semicircular sea of uniform depth, Monthly Notices of the Royal Astronomical Society (Geophysical Supplements), 2, s1, 32–44, 1928.
  • 15. D.A. Nield, A. Bejan, Convection in Porous Media, 3rd ed., Springer, New York, 2006.
  • 16. J.L. Beck, Convection in a box of porous material saturated with fluid, Physics of Fluids, 15, 1377–1383, 1972.
  • 17. A. Zebib, Onset of natural convection in a cylinder of water saturated porous media, Physics of Fluids, 21, 699–700, 1978.
  • 18. H.H. Bau, K.E. Torrance, Onset of convection in a permeable medium between vertical coaxial cylinders, Physics of Fluids, 24, 382–385, 1981.
  • 19. C.Y. Wang, Onset of natural convection in a sector-shaped box containing a fluidsaturated porous medium, Physics of Fluids, 9, 3570–3571, 1997.
  • 20. V.A. Kazhan, On the onset of free convection in vertical channels with cross sections in the form of circular or annular sectors, Technical Physics, 43, 8, 917–920, 1998.
  • 21. R.A. Wooding, The stability of a viscous liquid in a vertical tube containing porous material, Proceedings of the Royal Society of London, A252, 120–134, 1959.
  • 22. A. Barletta, L. Storesletten, Adiabatic eigenflows in a vertical porous channel, Journal of Fluid Mechanics, 749, 778–793, 2014.
  • 23. K.B. Haugen, P.A. Tyvand, Onset of thermal convection in a vertical porous cylinder with conducting wall, Physics of Fluids, 15, 9, 2661–2667, 2003.
  • 24. C.W. Horton, F.T. Rogers, Convection currents in a porous medium, Journal of Applied Physics, 16, 367–370, 1945.
  • 25. E.R. Lapwood, Convection of a fluid in a porous medium, Proceedings of the Cambridge Philosophical Society, 44, 508–521, 1948.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3702914-e734-42e8-8efe-d0e37b49a2a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.