Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The use of different turbulators in solar air heaters can significantly impact their thermal and hydraulic performance. This study compares solar air heaters equipped with W-contoured, taper-contoured, and reverse taper-contoured turbulators. It examines heat transfer coefficients, pressure drops, velocity contours, turbulent kinetic energy contours, and thermal perfor-mance factors for these systems under varying operating conditions. The air Reynolds number ranges from 4000 to 18 000, while design parameters such as relative roughness height and relative pitch ratio remain constant for accurate comparison. The simulations were conducted with a uniform heat flux of 1200 W/m2. The W-shaped contour roughness achieved the greatest heat transfer coefficient, surpassing both the tapered and reverse tapered configurations. In terms of friction factor, the tapered contour on the absorber plate led, followed by the reverse tapered and W-shaped contours. Overall, the W-shaped contour delivered the best performance. At lower Reynolds numbers, the reverse tapered contour outperformed the tapered contour, whereas at higher Reynolds numbers, the tapered contour showed superior performance compared to the reverse tapered contour.
Czasopismo
Rocznik
Tom
Strony
189--196
Opis fizyczny
Bibliogr. 42 poz.
Twórcy
autor
- Department of Mechanical Engineering, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun 248007, India
autor
- Department of Mechanical Engineering, Veer Madho Singh Bhandari Uttarakhand Technical University, Dehradun 248007, India
autor
- Department of Mechanical Engineering, School of Engineering and Technology, K.R. Mangalam University, Gurugram, Haryana 122103, India
autor
- Department of Mechanical Engineering, Uttaranchal University, Dehradun, India
autor
- Department of Mechanical Engineering, Shivalik College of Engineering Dehradun, India
autor
- Department of Mechanical Engineering, Graphic Era Deemed to Be University, Dehradun 248002, Uttarakhand, India
autor
- Department of Mechanical Engineering, Graphic Era Hill University, Dehradun 248002, Uttarakhand, India
autor
- Department of Mechanical Engineering, U.P.E.S., Dehradun, India
autor
- gDepartment of Mechanical Engineering, U.P.E.S., Dehradun, India
autor
- Department of Mechanical Engineering, Vellore Institute of Technology, Vellore, India
Bibliografia
- [1] Bisht, V.S., Patil, A.K., & Gupta, A. (2018). Review and performance evaluation of roughened solar air heaters. Renewable and Sustainable Energy Reviews, 81(1), 954−977. doi: 10.1016/j.rser. 2017.08.036
- [2] Bhandari, P., Varshney, L., & Bisht, V.S. (2018). Numerical analysis of hybrid solar water heating system using wire screen packed SAH. 1st International Conference on New Frontiers in Engineering, Science & Technology, (pp. 415−142), 28-12 Janu-ary, New Delhi, India.
- [3] Varshney, L., Bhandari, P., & Bisht, V.S. (2014). Performance evaluation of hybrid solar water heating system using wire screen packed solar air heater. International Journal of Engineering Research and Applications (IJERA), 311–316. https://www.ijera. com/special_issue/ICETMEE/ME18%20rp5%20final.pdf
- [4] Kaushik, S., & Singh, S. (2019). Analysis on heat transmission and fluid flow attributes in solar air accumulator passage with diverse faux jaggedness silhouettes on absorber panel. International Journal of Engineering and Advanced Technology, 8(5S3), 32–41. doi: 10.35940/ ijeat.E1011.0785S319
- [5] Kaushik, S., Panwar, K., & Vashisth, S. (2022). Investigating the thermionic effect of broken perforated curved ribs on solar preheater through CFD simulation. Res Militaris 12(5), 1508–1524.
- [6] Kumar, N., Singh, P., Redhewal, A.K., & Bhandari, P. (2015). A review on nanofluids applications for heat transfer in micro-channels. Procedia Engineering, 127, 1197–1202. doi: 10.1016/j. proeng.2015.11.461
- [7] Kaushik, S., Ali, S., Kanojia, N., Uniyal, V., Verma, A.K., Panwar, S., Uniyal, S., Goswami, S., Kindo, S., Som, D., & Yadav, N.K. (2023). Experimental and CFD analysis of fluid flow in a rectangular strip-based microchannel with nanofluid. Materials Today: Proceedings. doi: 10.1016/j.matpr.2023.05.647
- [8] Negi, A., Ranakoti, L., Bhandari, P., Khargotra, R., & Singh, T. (2024). Thermo-physical characteristics and storage material compatibility in nano-enhanced phase change materials for solar distillation applications: A critical assessment. Solar Energy Materials and Solar Cells, 271, 112870. doi: 10.1016/j.solmat.2024. 112870
- [9] Uniyal, A., Prajapati, Y.K., Ranakoti, L., Bhandari, P., Singh, T., Gangil, B., Sharma, S., Upadhyay, V.V., & Eldin, S.M. (2022). Recent advancements in evacuated tube solar water heater: A critical review integration of phase change materials and nano-fluids with ETCs. Energies, 15(23), 8999. doi: 10.3390/en15238999
- [10] Bhandari, P., Prajapati Y.K., & Bisht, V.S. (2021). Heat transfer augmentation in micro pin fin heat sink using out of plane fluid mixing. Proceedings of the 26th National and 4th International ISHMT-ASTFE Heat and Mass Transfer Conference, (pp. 1595–1600), 17-20 December, Madras, India. doi: 10.1615/IHMTC-2021.2400
- [11] Bhandari, P., & Prajapati Y.K. (2020). Numerical analysis of different arrangement of square pin-fin microchannel heat sink. Advances in Mechanical Engineering. Lecture Notes in Mechanical Engineering (pp. 879–891). Springer, Singapore. doi: 10.1007/ 978-981-15-0124-1_79
- [12] Kaushik, S., Verma, A.K., Singh, S., Kanojia, N., Panwar, S., Uniyal, S., Goswami, S., Kindo, S., Som, D., & Yadav, N.K. (2023). Comparative analysis of fluid flow attributes in rectangu-lar shape micro channel having external rectangular inserts with hybrid AL2O3+ZNO+H2O nano fluid and (H2O) base fluid. Ever-green − Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 10(2), 851–862. doi: 10.5109/6792839
- [13] Kaushik, S., Uniyal, V., Ali, S., Kanojia, N., Verma, A.K., Joshi, S., Makhloga, M., Pargai, P.S., Sharma, S.K., Kumar, R., & Pal, S. (2023). Comparative analysis of fluid flow in mini channel with nano fluids and base fluid. Materials Today: Proceedings. doi: 10.1016/j.matpr.2023. 05.363
- [14] Kaushik, S., Uniyal, V., Verma, A.K., Jha, A.K., Joshi, S., Ma-khloga, M., Pargai, P.S., Sharma, S.K., Kumar, R., & Pal, S. (2023). Comparative experimental and cfd analysis of fluid flow attributes in mini channel with hybrid CuO+ZnO+H2O nano fluid and (H2O) base fluid. Evergreen − Joint Journal of Novel Carbon Resource Sciences & Green Asia Strategy, 10(1), 182–195. doi: 10.5109/6781069
- [15] Bhandari, P., Singh, J., Kumar K., & Ranakoti, L. (2022). A re-view on active techniques in microchannel heat sink for miniaturization problem in electronic industry: Acta Innovations, 45, 45−54. doi: 10.32933/ActaInnovations.45.4
- [16] Bhandari, P., Rawat, K.S., Prajapati, Y.K., Padalia, D., Ranakoti, L., & Singh, T. (2023). A review on design alteration in microchannel heat sink for augmented thermohydraulic performance. Ain Shams Engineering Journal, 15(2), 102417. doi: 10.1016/j. asej.2023.102417
- [17] Bhandari, P., Rawat, K., Prajapati, Y.K., Padalia, D., Ranakoti, L., & Singh, T. (2023). Design modifications in micro pin fin configuration of microchannel heat sink for single phase liquid flow: A review. Journal of Energy Storage, 66, 107548. doi: 10.1016/j.est.2023. 107548
- [18] Kaushik, S., Singh, S., & Panwar, K. (2023). Experimental study of fluid flow properties in spiral tube heat exchanger with varying insert shape over spiral tube profile. Materials Today Elsevier, 80(1), 78–84. doi: 10.1016/j.matpr. 2022.10.117
- [19] Kaushik, S., Singh, S., & Panwar, K. (2021). Comparative anal-ysis of thermal and fluid flow behaviour of diverse nano fluid using Al2O3, ZnO, CuO nano materials in concentric spiral tube heat exchanger. Materials Today: Proceedings, 46(15), 6625–6630. doi: 10.1016/j.matpr.2021. 04.1000
- [20] Singh, P., Bisht, V.S., & Bhandari, P. (2021). Numerical study of heat exchanger having protrusion and dimple roughened conical ring inserts. Advances in Fluid and Thermal Engineering. Lecture Notes in Mechanical Engineering (pp. 151–161). Springer, Sin-gapore. doi: 10.1007/ 978-981-16-0159-0_14
- [21] Kaushik, S., Singh, S., Kanojia, N., Rawat, K., & Panwar, K. (2020). Comparative study for thermal and fluid flow peculiarities in cascading spiral inner tube heat exchanger with or without diverse inserts over spiral tube. IOP Conference Series: Materials Science and Engineering, 802, 012009. doi: 10.1088/1757-899X/ 802/1/012009
- [22] Kaushik, S., Mahar, V.S., Singh, S., Kshetri, R., Kumar, B., Me-hta, J.S., Paul, A.R., Kumar, S., Vashisth, S., Pundir, R.S., & Kumar, A. (2024). Comparative experimental analysis of fluid flow in a concentric tube exchanger having semi hollow cylindrical macro inserts with nanofluid and base fluid. Archives of Thermo-dynamics, 45(2), 205–212. doi: 10.24425/ather. 2024.150866
- [23] Uniyal, V., Joshi, S.K., Kaushik, S., & Kanojia, N. (2021). CFD investigation of transfer of the heat and turbulent flow in circular copper tube with perforated conical rings of aluminium material. Materials Today: Proceeding, 46(15), 6719–6725. doi: 10.1016/ j.matpr.2021.04.217
- [24] Bisht, A.S., Bisht, V.S., Bhandari, P., Rawat, K.S., Alam, T., & Blecich, P. (2023). The use of a vortex generator for the efficient cooling of lithium-ion batteries in hybrid electric vehicles. Pro-cesses, 11(2), 500. doi: 10.3390/ pr11020500
- [25] Kaushik, S., Singh, S., Kanojia, N., Naudiyal, R., Kshetri, R., Paul, A.R., Kumari, R., Kumar, A., & Kumar, S. (2021). Effect of introducing varying number of fins over LED light bulb on thermal behavior. Materials Today: Proceeding, 46(19), 9794–9799. doi: 10.1016/j.matpr. 2020.10.876
- [26] Thapa, R.K., Bisht, V.S., Bhandari, P., & Rawat, K. (2022). Nu-merical study of car radiator using dimple roughness and nanofluid. Archives of Thermodynamics, 43(3), 125–140. doi: 10.24425/ather.2022.143175
- [27] Thapa, R.K., Bisht, V.S., Rawat, K., & Bhandari, P. (2023). Com-putational analysis of automobile radiator roughened with rib roughness. Journal of Heat and Mass Transfer Research, 9(2), 209–218. doi: 10.22075/jhmtr.2023.27617. 1382
- [28] Khanlari, A., Aytaç, I., Tuncer, A.D., Variyenli, H.I., & Şahin, H.N. (2014). Improving the performance of a PCM integrated so-lar air collector by adding porous fins over the bottom side of the absorber: A transient CFD study. Journal of Energy Storage, 90(A), 111847. doi: 10.1016/j.est. 2024.111847
- [29] Abdulmejeed, A.E.A., Tuncer, A.D., Khanlari, A., & Gungor, A. (2024). Investigation of combined parallel and triple-pass v-cor-rugated solar air heater: A numerical and experimental study. Process Safety and Environmental Protection, 185, 1385–1398, doi: 10.1016/ j.psep.2024.03. 107
- [30] Tuncer, A.D., Amini, A., & Khanlari, A. (2023). Developing an infrared-assisted solar drying system using a vertical solar air heater with perforated baffles and nano-enhanced black paint. So-lar Energy, 263, 111958, doi: 10.1016/ j.solener.2023.111958
- [31] Bohra, J., Bisht, V.S., Bhandari, P., Rawat, K.S., Singh, J., Kumar, K., & Rawat, B. (2022). Effect of variable blockage height ratio on performance for solar air heater roughened with 45°-shaped baffles. Materials Today: Proceedings, 69(2), 153−157. doi: 10.1016/j.matpr.2022.08.279
- [32] Semalty, A., Bisht, V.S., Bhandari, P., Rawat, K.S., Singh, J., Ku-mar, K. & Dixit, A.K. (2022). Thermodynamic investigation on solar air heater having roughness as multiple broken arc and circular protrusion. Materials Today: Proceedings, 69(2), 181–186. doi: 10.1016/j.matpr.2022.08. 336
- [33] Singh, J., Bisht, V.S., Bhandari, P., Kumar, K., Singh, J., Alam, T., Dixit, S., Singh, S., & Khusnutdinov, R. (2024). Computational parametric investigation of solar air heater with dimple roughness in S-shaped pattern. International Journal on Interac-tive Design and Manufacturing, 18, 2969–2979. doi: 10.1007/ s12008-023-01392-8
- [34] Haldia, S., Bisht, V.S., Bhandari, P., Ranakoti, L., & Negi, A. (2024). Numerical assessment of solar air heater performance having broken arc and broken S-shaped ribs as roughness, Archives of Thermodynamics, 2024, 45(1), 23−31. doi: 10.24425/ ather.2024.150435
- [35] Kumar, S., Bisht, V.S., Bhandari, P., Ranakoti, L., Negi, A., Bisht, A.S., & Padalia, D. (2024). Computational analysis of modified solar air heater having combination of ribs and protrusion in S-shaped configuration. International Journal on Interactive Design and Manufacturing. doi: 10.1007/s12008-024-01972-2
- [36] Kumar, D. (2023). Heat transfer and friction characteristics in three-side solar air heaters with the combination of multiv and transverse wire roughness. Archives of Thermodynamics, 44(1), 63–87. doi: 10.24425/ ather.2023. 145877
- [37] Ghritlahre, H.K. (2021). An experimental study of solar air heater using arc shaped wire rib roughness based on energy and exergy analysis. Archives of Thermodynamics, 42(3), 115–139. doi: 10.24425/ather.2021. 138112
- [38] Patel, S. S., & Lanjewar, A. (2019). Exergy based analysis of so-lar air heater duct with W-shaped rib roughness on the absorber plate. Archives of Thermodynamics, 40(4), 21–48. doi: 10.24425/ ather.2019.130006
- [39] Chaudhari, M., Sharma, S.L., & Debbarma, A. (2023). Exergetic performance analysis of solar air heater with inverted L-shape ribs as roughness element. Archives of Thermodynamics, 44(3), 241–267. doi: 10.24425/ather. 2023.147546
- [40] Ghildyal, A., Bisht, V.S., Rawat, K.S., & Bhandari, P. (2023). Effect of D-shaped, reverse D-shaped and U-shaped turbulators in solar air heater on thermohydraulic performance. Archives of Thermodynamics, 44(2), 3–20. doi: 10.24425/ather.2023.146556
- [41] Bhandari, P., Vyas, B., Padalia, D., Ranakoti, L., Prajapati, Y.K., & Bangri, R.S. (2024). Comparative thermo-hydraulic analysis of periodic stepped open micro pinfin heat sink. Archives of Thermodynamics, 45(3), 99–105. doi: 10.24425/ather.2024.151228
- [42] Bhandari, P., & Prajapati, Y.K. (2021). Numerical study of fluid flow and heat transfer in stepped micro-pinfin heat sink. Fluid Mechanics and Fluid Power. Lecture Notes in Mechanical Engineering (pp. 373–381). Springer, Singapore,. doi: 10.1007/978-981-16-0698-4_40
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e36457de-931a-4246-b815-3ebe463dd882
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.