PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Robotic machining in correlation with a 3D scanner

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents an original method of communication and data exchange in a robotic machining station consisting of two robots, a positioner and a 3D optic scanner. The task of one of the robots, equipped with a 3D optic scanner, was to receive point cloud of a detail (mould) attached to the positioner table. After detail digitalisation, the received point cloud was adjusted to (compared with) a model detail in the form of a CAD file in the Atos Professional software. In the software, casting material excesses were received in places selected on the detail. Values of the excesses and their coordinates were saved in the script and sent to the robot controller using TCP/IP protocol. The other of robots, equipped with the force control addition and the option of obtaining various processing tools, received sent excess and its coordinates. The other robot adjusted the processing parameters to random excesses, the value of which was received from measurements of the optic scanner of the first robot.
Rocznik
Strony
36--41
Opis fizyczny
Bibliogr. 29 poz., il. kolor.
Twórcy
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Rzeszow, Poland
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Rzeszow, Poland
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Rzeszow, Poland
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Rzeszow, Poland
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Rzeszow, Poland
  • Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Rzeszow, Poland
  • Institute of Technology State University of Applied Sciences in Nowy Sącz, Nowy Sącz, Poland
Bibliografia
  • [1] Łygas K., Danilczuk W.: Pick’n’place application with the use of vision system and own communication interface (in Polish). Autobusy: technika, eksploatacja, systemy transportowe, 18, 2017.
  • [2] Song Y., Liang W., Yang Y.: A method for grinding removal control of a robot belt grinding system. Journal of Intelligent Manufacturing, 23(5), 1903-1913, 2012.
  • [3] Burghardt A., Szybicki D., Kurc K.,Muszyńska M.,Mucha J.: Experimental Study of Inconel 718 Surface Treatment by Edge Robotic Deburring with Force Control. Strength of Materials, 49(4), 594- 604, 2017.
  • [4] Jiang Y.F.: The Application of the TCP/IP on the Robot System. Applied Mechanics and Materials 159, 351-354, 2012.
  • [5] Kinder K.: Event-driven programming with Twisted and Python. Linux journal, 2005(131): 6, 2005.
  • [6] Tutak J. S.: Virtual reality and exercises for paretic upper limb of stroke survivors. Tehnički vjesnik, 24(Supplement 2), 451-458, 2017.
  • [7] Hui-ping L., Dai-min C., Miao Y.: Communication of Multi-robot System on the TCP/IP. In Mechatronic Science, Electric Engineering and Computer (MEC), 2011 International Conference on, 1432- 1435, 2011.
  • [8] Latos H., Mikolajczyk T.: Surface shaping with industrial robot. OPTIROB-2006, Predeal, Romania, University “POLITEHNICA” of Bucharest, Faculty IMST, Department MSP, 265-269, 2006.
  • [9] Gierlak P., Burghardt A., Szybicki D., Szuster M., Muszyńska M.: On-line manipulator tool condition monitoring based on vibration analysis. Mechanical Systems and Signal Processing, 89, 14-26, 2017.
  • [10] Sempere V. M., Silvestre J.: Multimedia applications in industrial networks: Integration of image processing in profibus. In IEEE Transactions on Industrial Electronics, 50(3), 440-448, 2003.
  • [11] Valera A., Salt J., Casanova V., Ferrus S.: Control of industrial robot with a fieldbus. In Emerging Technologies and Factory Automation, 1999. Proceedings. ETFA’99. 1999 7th IEEE International Conference on, Vol. 2, 1235-1241, 1999.
  • [12] Zolkiewski S., Pioskowik D.: Robot control and online programming by human gestures using a kinect motion sensor. In New Perspectives in Information Systems and Technologies, Volume 1, 593-604, Springer, Cham 2014.
  • [13] Burghardt A., Kurc K., Szybicki D., Muszyńska M., Nawrocki J.: Software for the robot-operated inspection station for engine guide vanes taking into consideration the geometric variability of parts. Technical Gazette, 24(2), 349-353, 2017.
  • [14] Burghardt A., Kurc K., Szybicki D., Muszyńska M., Nawrocki J.: Robot-operated quality control station based on the UTT method. Open Engineering, 7(1), 37-42, 2017.
  • [15] Burghardt A., Kurc K., Szybicki D., Muszyńska M., Szczęch T.: Monitoring the parameters of the robot-operated quality control process. Advances in Science and Technology - Research Journal, 11(1), 232-236, 2017.
  • [16] Li W. L., Xie H., Zhang G., Yan S. J., Yin Z. P.: 3-D shape matching of a blade surface in robotic grinding applications. IEEE/ASME Transactions on Mechatronics, 21(5), 2294-2306, 2016.
  • [17] Piotrowski A.: An Analysis of the use of the Python Language in Robot Applications. Applied Computer Science, 12(2), 2016.
  • [18] Lutz M.: Programming python. O’Reilly, 1996.
  • [19] Python 3.4.3 Documentation
  • [20] Rhodes B., Goerzen J., Beaulne A., Membrey P.: Foundations of Python network programming. Apress, 2014.
  • [21] Python Scripting for GOM Applications, documentation
  • [22] Mizugaki Y., Sakamoto M., Kamijo K., Taniguchi N.: Development of metal-mold polishing robot system with contact pressure control using CAD/CAM data. CIRP Annals-Manufacturing Technology, 39(1), 523-526, 1990.
  • [23] Mikołajczyk T.: Robot application to surface finish machining. J Polish CIMAC, 5(3), 2010.
  • [24] Tam H. Y., Lui O. C. H., Mok A. C.: Robotic polishing of free-form surfaces using scanning paths. Journal of Materials Processing Technology, 95(1-3), 191-200, 1999.
  • [25] Zhao Y., Zhao J., Zhang L., Qi L.: Development of a robotic 3D scanning system for reverse engineering of freeform part. In Advanced Computer Theory and Engineering, 2008. ICACTE’08. International Conference on, 246-250, 2008.
  • [26] Sun B., Li B.: Laser displacement sensor in the application of aero-engine blade measurement. IEEE Sensors Journal, 16(5), 1377-1384, 2016.
  • [27] Qi L., Gan Z., Yun C., Tang Q.: A novel method for Aero engine blade removed-material measurement based on the robotic 3D scanning system. In Computer, Mechatronics, Control and Electronic Engineering (CMCE), 2010 International Conference on, Vol. 4, 72-75, 2010.
  • [28] Yilmaz O., Gindy N., Gao J.: A repair and overhaul methodology for aeroengine components. Robotics and Computer-Integrated Manufacturing, 26(2), 190-201, 2010.
  • [29] Burghardt A., Kurc K., Szybicki D., Muszyńska M., Szczęch T.: Robot-operated inspection of aircraft engine turbine rotor guide vane segment geometry. Technical Gazette, 24(2), 345-348, 2017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3627ac7-ef48-4598-a979-b9db29f08828
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.