Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents modeling and simulation results of the operation of a three-phase fluidized bedbioreactorwith partial recirculation of biomass. The proposed quantitative description of the bioreactortakes into account biomass growth on inert carriers, microorganisms decay and interphase biomasstransfer. Stationary characteristicsof the bioreactorand local stability of steady-states were determined.The influence of microbiological growth kinetics on the multiplicity of steady-states was discussed.The relationship between biofilm growth and boundaries of fluidized bed existence was shown
Czasopismo
Rocznik
Tom
Strony
77--–86
Opis fizyczny
Bibliogr. 9 poz., wykr.
Twórcy
autor
- Cracow University of Technology, Department of Chemical and Process Engineering,ul. Warszawska 24, 30-155 Kraków, Poland
autor
- Cracow University of Technology, Department of Chemical and Process Engineering,ul. Warszawska 24, 30-155 Kraków, Poland
Bibliografia
- 1. Beyenal H., Chen S.N., Lewandowski Z., 2003. The double substrate growth kinetics of Pseudomonas aeruginosa.Enzyme Microb. Technol., 32, 92–98. DOI: 10.1016/S0141-0229(02)00246-6.
- 2. Kwon S., Yoo I-K, Lee W.G., Chang H.N., Chang Y.K. 2001. High-rate continuous production of lactic acidbyLactobacillus rhamnosusin a two-stage membrane cell-recycle bioreactor.Biotechnol Bioeng., 73, 25–34.DOI: 10.1002/1097-0290(20010405)73:1<25::AID-BIT1033>3.0.CO;2-N.
- 3. Olivieri G., Russo M.E., Marzocchella A., Salatino P., 2011. Modeling of an aerobic biofilm reactor with double-limiting substrate kinetics: Bifurcationaland dynamicalanalysis.Biotechnol.Prog.,27, 1599–1613.DOI: 10.1002/btpr.690.
- 4. Onysko K.A., Robinson C.W., Budman H.M., 2002. Improved modelling of the unsteady-state behaviour ofan immobilized-cell, fluidized-bed bioreactor for phenol biodegradation.Can. J. Chem. Eng., 80, 239–252.DOI: 10.1002/cjce.5450800209.
- 5. Park Y., Davis M.E., Wallis D.A., 1984. Analysis of a continuous, aerobic, fixed-film bioreactor. II. Dynamicbehavior.Biotechnol. Bioeng., 26, 468–476. DOI: 10.1002/bit.260260510.
- 6. Seker S., Beyenal H., Salih B., Tanyolac A., 1997. Multi-substrate growth kinetics ofPseudomonas putidaforphenol removal.Appl. Microbiol. Biotechnol., 47, 610–614. DOI: 10.1007/s002530050982.
- 7. Seydel R., 2009. Practical bifurcation and stability analysis. 3rdedition, Springer, New York. DOI: 10.1007/978-1-4419-1740-9.
- 8. Tang W., Fan L., 1987. Steady state phenol degradation in a draft-tube, gas-liquid-solid fluidized-bed bioreactor.AIChE J., 33, 239–249. DOI: 10.1002/aic.690330210.
- 9. Tang W., Wisecarver K., Fan L., 1987. Dynamics of a draft tubegas-liquid-solid fluidized bed bioreactor for phenoldegradation.Chem. Eng. Sci., 42, 2123–2134. DOI: 10.1016/0009-2509(87)85033-9.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e360b9e2-e109-42ba-8e1d-0f7557121185