PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Principal Component and Cluster Analysis for determining diversification of bottom morphology based on bathymetric profiles from Brepollen (Hornsund, Spitsbergen)

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Navigation charts of the post-glacial regions of Arctic fjords tend not to cover regions from which glaciers have retreated. Whilst research vessels can make detailed bathymetric models using multibeam echosounders, they are often too large to enter such areas. To map these regions therefore requires smaller boats carrying single beam echosounders. To obtain morphology models of equivalent quality to those generated using multibeam echosounders, new ways of processing data from single beam echosounders have to be found. The results and comprehensive analysis of such measurements conducted in Brepollen (Hornsund, Spitsbergen) are presented in this article. The morphological differentiation of the seafloor was determined by calculating statistical, spectral and wavelet transformation, fractal and median filtration parameters of segments of bathymetric profiles. This set of parameters constituted the input for Principal Component Analysis and then in the form of Principal Components for the Cluster Analysis. As a result of this procedure, three morphological classes are proposed for Brepollen: (i) steep slopes (southern Brepollen), (ii) flat bottoms (central Brepollen) and gentle slopes (the Storebreen glacier valley and the southern part of the Hornbreen glacier valley), (iii) the morphologically most diverse region (the central Storebreen valley, the northern part of the Hornbreen glacier valley and the north-eastern part of central Brepollen).
Czasopismo
Rocznik
Strony
59--84
Opis fizyczny
Bibliogr. 45 poz., rys., wykr.
Twórcy
autor
  • Institute of Geophysics, Polish Academy of Sciences, Księcia Janusza 64, 01-452 Warsaw, Poland
autor
  • Department of Oceanography and Geography, University of Gdańsk, al. Marszałka J. Piłsudskiego 46, 81-378 Gdynia, Poland
  • Institute of Geophysics, Polish Academy of Sciences, Księcia Janusza 64, 01-452 Warsaw, Poland
  • Department of Biology and Earth Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
Bibliografia
  • [1]. Adam C., Vidal V., Bonneville A., 2005, MiFil: a method to characterize seafloor swells with application to the south central Pacific, Geochem. Geophy. Geosy.,6 (1), Q01003, 1-25, http://dx.doi.org/10.1029/2004GC000814
  • [2]. Aharonson O., Zuber M. T., Rothman D. H., 2001, Statistics of Mars’ topography from the Mars Orbiter Laser Altimeter: slopes, correlations and physical models, J. Geophys. Res., 106 (E10), 23723-23735, http://dx.doi.org/10.1029/2000JE001403
  • [3]. Błaszczyk M., Jania J. A., Hagen J. O., 2009, Tidewater glaciers of Svalbard: recent changes and estimates of calving fluxes, Pol. Polar Res., 30 (2), 85-142.
  • [4]. Błaszczyk M., Jania J. A., Kolondra L., 2013, Fluctuations of tidewater glaciers in Hornsund Fjord (Southern Svalbard) since the beginning of the 20th century, Pol. Polar Res., 34 (4), 327-352, http://dx.doi.org/10.2478/popore-2013-0024
  • [5]. Caliński T., Harabasz J., 1974, A dendrite method for cluster analysis, Commun. Stat., 3, 1-27.
  • [6]. Dowdeswell J. A., Hogan K. A., Evans J., Noormets R., O’Cofaigh C., Ottesen D., 2010, Past ice-sheet flow east of Svalbard inferred from streamlined subglacial landforms, Geology, 38 (2), 163-166, http://dx.doi.org/10.1130/G30621.1
  • [7]. Forwick M., Baeten N. J., Vorren T. O., 2009, Pockmarks in Spitsbergen fjords, Norw. J. Geol., 89 (1-2), 65-77.
  • [8]. Głowacki P., Jania J. A., 2008, Nature of rapid response of glaciers to climate warming in Southern Spitsbergen, Svalbard, [in:] The first International Symposium on the Arctic Research (ISAR-1) - Drastic Change under Global Warming, Nat. Comm. Japan, Tokyo, 257-260.
  • [9]. Goff J. A., 2000, Simulation of stratigraphic architecture from statistical and geometrical characterizations, Math. Geol., 32 (7), 765-786, http://dx.doi.org/10.1023/A:1007579922670
  • [10]. Goff J. A., Orange D. L., Mayer L. A., Hughes Clarke J. E., 1999, Detailed investigation of continental shelf morphology using a high-resolution swath sonar survey: the Eel margin, northern California, Mar. Geol., 154 (1-4), 255-269, http://dx.doi.org/10.1016/S0025-3227(98)00117-0
  • [11]. Hastings H. M. G., Sugihara G., 1994, Fractals - a user’s guide for the natural sciences, Oxford Univ. Press, Oxford, New York, 7-77.
  • [12]. Herzfeld U. C., Kim I. I., Orcutt J. A., 1995, Is the ocean floor a fractal?, Math. Geol., 27 (3), 421-462, http://dx.doi.org/10.1007/BF02084611
  • [13]. Hiller J. K., Smith M., 2008, Residual relief separation: digital elevation model enhancement for geomorphological mapping, Earth Surf. Proc. Land., 33 (14), 2266-2276, http://dx.doi.org/10.1002/esp.1659
  • [14]. Kim S.-S., 2005, Separation of regional and residual components of bathymetry using directional median filtering, M. Sc. thesis, Univ. Hawaii, 49 p.
  • [15]. Kim S.-S., Wessel P., 2008, Directional median filtering for regional-residual separation of bathymetry, Geochem. Geophy. Geosy., 9 (3), Q03005, 11 pp., http://dx.doi.org/10.1029/2007GC001850
  • [16]. Lefebvre A., Lyons A. P., 2011, Quantification of roughness for seabed characterisation, [in:] Underwater Acoustic Measurements (4th UAM) - Technologies & Results, Kos, Greece, Proc. Book 4th Int. Conf. Exhibit., 1623-1630.
  • [17]. Little S. A., 1994, Wavelet analysis of seafloor bathymetry: an example, [in:] Wavelets in geophysics, E. Foufoula-Georgiou & P. Kumar (eds.), Acad. Press Inc., San Diego, London, 167-182.
  • [18]. Little S. A., Carter P. H., Smith D. K., 1993, Wavelet analysis of a bathymetric profile reveals anomalous crust, Geophys. Res. Lett., 20 (18), 1915-1918, http://dx.doi.org/10.1029/93GL01880
  • [19]. Little S. A., Smith D. K., 1996, Fault scarp identification in side-scan sonar and bathymetry images from the Mid-Atlantic Ridge using wavelet-based digital filters, Mar. Geophys. Res., 18 (6), 741-755, http://dx.doi.org/10.1007/BF00313884
  • [20]. Mandelbrot B. B., 1982, The fractal geometry of nature, W. H. Freeman & Co., New York, 468 pp.
  • [21]. Maulik U., Bandyopadhyay S., 2002, Performance evaluation of some clustering algorithms and validity indices, IEEE T. Pattern Anal., 24 (12), 1650-1654, http://dx.doi.org/10.1109/TPAMI.2002.1114856
  • [22]. Milligan G. W., Cooper M. C., 1985, An examination of procedures for determining the number of clusters in a data set, Psychometrica, 50 (2), 159-179, http://dx.doi.org/10.1007/BF02294245
  • [23]. Moskalik M., Bialik R. J., 2011, Statistical analysis of topography of Isvika Bay, Murchisonfjorden, Svalbard, [in:] GeoPlanet: Earth and planetary sciences, experimental methods in hydraulic research, P. Rowiński (ed.), 1st edn., Springer, Berlin-Heidelberg, 225-233.
  • [24]. Moskalik M., Błaszczyk M., Jania J., 2013b, Statistical analysis of Brepollen bathymetry as a key to determine average depth on a glacier foreland, Geomorphology, http://dx.doi.org/10.1016/j.geomorph.2013.09.029, (in press).
  • [25]. Moskalik M., Grabowiecki P., Tęgowski J., Żulichowska M., 2013a, Bathymetry and geographical regionalization of Brepollen (Hornsund, Spitsbergen) based on bathymetric profiles interpolations, Pol. Polar Res., 34 (1), 1-22, http://dx.doi.org/10.2478/popore-2013-0001
  • [26]. Nikora V., Goring D., 2004, Mars topography: bulk statistics and spectral scaling, Chaos Solit. Fractals, 19 (2), 427-439, http://dx.doi.org/10.1016/S0960-0779(03)00054-7
  • [27]. Nikora V., Goring D., 2005, Martian topography: scaling, craters, and high- order statistics, Math. Geol., 37 (4), 337-355, http://dx.doi.org/10.1007/s11004-005-5952-4
  • [28]. Nikora V., Goring D., 2006, Spectral scaling in Mars topography: effect of craters, Acta Geophys., 54 (1), 102-112, http://dx.doi.org/10.2478/s11600-006-0009-8
  • [29]. Ostrovsky I., Tęgowski J., 2010, Hydroacoustic analysis of spatial and temporal variability of bottom sediment characteristics in Lake Kinneret in relation to water level fluctuation, Geo-Mar. Lett., 30 (3-4), 261-269, http://dx.doi.org/10.1007/s00367-009-0180-4
  • [30]. Ottesen D., Dowdeswell J. A., 2006, Assemblages of submarine landforms produced by tidewater glaciers in Svalbard, J. Geophys. Res., 111, F01016, http://dx.doi.org/10.1029/2005JF000330
  • [31]. Ottesen D., Dowdeswell J. A., 2009, An inter-ice-stream glaciated margin: submarine landforms and a geomorphic model based on marine-geophysical data from Svalbard, Geol. Soc. Am. Bull., 121 (11-12), 1647-1665, http://dx.doi.org/10.1130/B26467.1
  • [32]. Ottesen D., Dowdeswell J. A., Benn D. I., Kristensen L., Christiansen H. H., Christensen O., Hansen L., Lebesbye E., Forwick M., Vorren T. O., 2008, Submarine landforms characteristic of glacier surges in two Spitsbergen fjords, Quaternary Sci. Rev., 27 (15-16), 1583-1599, http://dx.doi.org/10.1016/j.quascirev.2008.05.007
  • [33]. Ottesen D., Dowdeswell J. A., Landvik J. Y., Mienert J., 2007, Dynamics of the Late Weichselian ice sheet on Svalbard inferred from high-resolution sea-floor morphology, Boreas, 36(3), 286-306, http://dx.doi.org/10.1111/j.1502-3885.2007.tb01251.x
  • [34]. Pace N. G., Gao H., 1988, Swath seabed classiffication, IEEE J. Ocean. Eng., 13 (2), 83-90, http://dx.doi.org/10.1109/48.559
  • [35]. Pastusiak T., 2010, Issues of non-researched marine regions coverage by electronic maps, Logistyka, 2, 2069-2086, (in Polish).
  • [36]. Ray S., Turi R. H., 1999, Determination of number of clusters in K-means clustering and application in colour image segmentation, [in:] Advances in Pattern Recognition and Digital Techniques (ICAPRDT’99), Calcutta, India, Proc. 4th Int. Conf., N. R. Pal, A. K. De & J. Das (eds.), Narosa Publ. House, New Delhi, 137-143.
  • [37]. Statens Kartverk, 2008, Paper chart 526, Hornsund, scale 1:50 000.
  • [38]. Tęgowski J., Łubniewski Z., 2002, Seabed characterisation using spectral moments of the echo signal, Acta Acust., 88 (5), 623-626.
  • [39]. The Norwegian Hydrographic Service and Norwegian Polar Research Institute, 1990, Den Norske Los. Arctic Pilot, 7, (2nd edn.), U.K. Hydrogr. Office, 2007, NP11 Arctic Pilot Edition 2004, Correction 2007.
  • [40]. Wen R., Sinding-Larsen R., 1997, Uncertainty in fractal dimension estimated from power spectra and variograms, Math. Geol., 29 (6), 727-753, http://dx.doi.org/10.1007/BF02768900
  • [41]. Wessel P., 1998, An empirical method for optimal robust regional-residual separation of geophysical data, Math. Geol., 30 (4), 391-408, http://dx.doi.org/10.1023/A:1021744224009
  • [42]. White L., 2003, Rivers bathymetry analysis in the presence of submerged large woody debris, M. Sc. Eng. thesis, Univ. Texas, Austin, 157 pp.
  • [43]. White L., Hodges B. R., 2005, Filtering the signature of submerged large woody debris from bathymetry data, J. Hydrol., 309 (1-4), 53-65, http://dx.doi.org/10.1016/j.jhydrol.2004.11.011
  • [44]. Wilson M. F. J., O’Connell B., Brown C., Guinan J. C., Grehan A. J., 2007, Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope, Mar. Geod., 30 (1-2), 3-35, http://dx.doi.org/10.1080/01490410701295962
  • [45]. Wornell G. W., Oppenheim A. V., 1992, Estimation of fractal signals from noisy measurements using wavelets, IEEE T. Signal Proces., 40 (3), 611-623, http://dx.doi.org/10.1109/78.120804
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e35f5d92-437c-47ea-a7d0-a45dc021d403
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.