PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Lyapunov-Lasalle based dynamic stabilization for fixed wing drones lyapunov‐lasalle based dynamic stabilization for fixed wing drones

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The market of Unmanned Aerial Vehicles (UAVs) for civil applications is extensively growing. Indeed, these air- planes are now widely used in applications such as data gathering, agriculture monitoring and rescue. The UAVs are required to track a fixed or moving object; thus, tracking control algorithms that ensure the system stability and that have a quick time response must be developed. This paper tackles the problem of supervising a fixed target using a fixed wing UAV flying at a constant altitude and a constant speed. For that purpose, three control algorithms were developed. In all of the algorithms, the UAV is expected to hover around the target in a circular trajectory. Moreover, the three approaches are based upon a Lyapunov-LaSalle stabilization method. The first tracking algorithm ensures that the UAV circles around the target. However, the path that the UAV follows in order to join this pattern is not studied. In the second and third approach, two different techniques that allow the UAV to intercept its final circular pattern in the quickest possible time and thus follow the tangent to the circular pattern are presented. Simulation results that show and compare the performances of the proposed methods are presented.
Słowa kluczowe
Twórcy
autor
  • Faculty of Engineering, Saint Joseph University of Beirut, Beirut, Lebanon
autor
  • Faculty of Engineering, Saint Joseph University of Beirut, Beirut, Lebanon
  • Agrosup, Dijon, France
  • College of Engineering and Technology, American University of the Middle, Kuwait
Bibliografia
  • [1] S. Aggarwal and N. Kumar. “Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges,” Computer Communications, vol. 149, 2020, doi: 10.1016/j.comcom.2 019.10.014.
  • [2] A. Ajami, J.-F. Balmat, J.-P. Gauthier, and T. Maillot. “Path planning and ground control station simulator for UAV,” In: 2013 IEEE Aerospace Conference, 2013, doi: 10.1109/AERO.2013.6496845.
  • [3] A. Ajami, M. Brouche, J.-P. Gauthier, and L. Sachelli. “Output stabilization of military uav in the unobservable case.” In: 2020 IEEE Aerospace Conference, 2020, 1-6, doi: 10.1109/AERO47225.2020.9172770.
  • [4] A. Ajami, J.-P. Gauthier, T. Maillot, and U. Serres.“How humans fly,” ESAIM: Control, Optimisation and Calculus of Variations, vol. 19, no. 4, 2013,1030-1054.
  • [5] A. Ajami, J.-P. Gauthier, and L. Sacchelli. “Dynamic output stabilization of control systems: An unobservable kinematic drone model,” Automatica, vol. 125, 2021, 109383, doi:0.1016/j.automatica.2020.109383.
  • [6] A. Ajami, J. Sawma, and J. E. Maalouf. “Dynamic stabilization-based trajectory planning for drones,” AIP Conference Proceedings, vol. 2570, no. 1, 2022, 020003, doi: 10.1063/5.0099757.
  • [7] A. Balluchi, A. Bicchi, B. Piccoli, and P. Soueres. “Stability and robustness of optimal synthesis for route tracking by dubins’ vehicles.” In: Proceedings of the 39th IEEE Conference on Decision and Control, vol. 1, 2000, doi: 10.1109/CDC.2000.912827.
  • [8] N. Boizot and J.-P. Gauthier. “Motion planning for kinematic systems,” IEEE Transactions on Automatic Control, vol. 58, no. 6, 2013, 1430-1442, doi: 10.1109/TAC.2012.2232376.
  • [9] U. Boscain and B. Piccoli. Optimal Syntheses for Control Systems on 2-D Manifolds, Springer, 2004.
  • [10] D. Campolo, L. Schenato, E. Guglielmelli, and S. S. Sastry. “A lyapunov-based approach for the control of biomimetic robotic systems with periodic forcing inputs,” IFAC Proceedings Volumes, vol. 38, no. 1, 2005, 637-641.
  • [11] H. Chitsaz and S. M. LaValle. “Time-optimal paths for a dubins airplane.” In: 46th IEEE Conference on Decision and Control, 2007, 2379-2384, doi: 10.1109/CDC.2007.4434966.
  • [12] L. E. Dubins. “On curves of minimal length with a constraint on average curvature and with pre scribed initial and terminal positions and tangents,” Am. Journ. Math, vol. 79, no. 1, 1957, 497-516.
  • [13] E. W. Frew, D. A. Lawrence, C. Dixon, J. Elston, and W. J. Pisano. “Lyapunov guidance vector fields for unmanned aircraft applications.” In: 2007 American Control Conference, 2007, 371-376, doi: 10.1109/ACC.2007.4282974.
  • [14] J.-P. Gauthier and V. Zakalyukin. “On the motion planning problem, complexity, entropy, and non-holonomic interpolation,” Journal of Dynamical and Control Systems, vol. 12, no. 3, 2006, 371-404, doi: 10.1007/s10450-006-0005-y.
  • [15] M.-D. Hua, T. Hamel, P. Morin, and C. Samson. “A control approach for thrust-propelled underactuated vehicles and its application to vtol drones,” IEEE Transactions on Automatic Control, vol. 54, no. 8, 2009, 1837-1853, doi: 10.1109/TAC.2009.2024569.
  • [16] M.-A. Lagache, U. Serres, and V. Andrieu. “Time minimum synthesis for a kinematic drone model.” In: 54th IEEE Conference on Decision and Control (CDC), 2015, 4067-4072, doi: 10.1109/CDC.2015.7402852.
  • [17] D. A. Lawrence, E. W. Frew, and W. J. Pisano. “Lyapunov vector fields for autonomous unmanned aircraft flight control,” Journal of Guidance, Control, and Dynamics, vol. 31, no. 5, 2008, 1220-1229, doi: 10.2514/1.34896.
  • [18] T. Maillot, U. Boscain, J.-P. Gauthier, and U. Serres. “Lyapunov and minimum-time path planing for drones,” Journal of Dynamical and Control Systems, vol. 21, no. 1, 2015, 47-80, doi: 10.1007/s10883-014-9222-y.
  • [19] S. Park, J. Deyst, and J. How. “A new nonlinear guidance logic for trajectory tracking,” 2004, doi: 10.2514/6.2004-4900.
  • [20] B. Piccoli and H. J. Sussmann. “Regular synthesis and sufficiency conditions for optimality,” SIAM J. Control Optim, vol. 39, 1998, 359-410, doi: 10.1137/S0363012999322031.
  • [21] Y. Qu, Y. Zhang, and Y. Zhang. “A global path planning algorithm for fixed-wing uavs,” Journal of Intelligent & Robotic Systems, vol. 91, no. 3, 2018, 691-707, doi: 10.1007/s10846-017-0729-9.
  • [22] F. Ropero, P. Muñoz, and M. D. R-Moreno. “Terra: A path planning algorithm for cooperative ugv-uav exploration,” Engineering Applications of Artificial Intelligence, vol. 78, 2019, 260-272, doi: 10.1016/j.engappai.2018.11.008.
  • [23] J. Sawma, A. Ajami, and J. El Maalouf. “Dynamic stability for uav path planning.” In: 2022 International Conference on Communications, Information, Electronic and Energy Systems (CIEES), 2022, 1-6, doi: 10.1109/CIEES55704.2022.9990803.
  • [24] P. Soueres and J.-P. Laumond. “Shortest paths synthesis for a car-like robot,” IEEE Transactions on Automatic Control, vol. 41, no. 5, 1996, 672-688, doi: 10.1109/9.489204.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3595b92-ae47-4f67-9b59-a0bd6b7acc89
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.