Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
RF energy harvesters require a precise design and verification. Power conversion efficiency (PCE) is affected by a number of factors. Among others, there are: design of emitting and transmitting circuits, transmission conditions, frequency, bandwidth and distance between antennas. All of those factors contribute to the final effectiveness of RF energy harvesting (RFEH) circuits. This is why it is important to standardize conditions of simulating and measuring the circuits performance. Only then it will be possible to compare usefulness of different designs. This article discusses such conditions and proposes some standardizations.
Czasopismo
Rocznik
Tom
Strony
693--712
Opis fizyczny
Bibliogr. 47 poz., rys., tab., wykr., wz.
Twórcy
autor
- Faculty of Electrical Engineering, Automation, Computer Science and Biomedical Engineering, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Kraków, Poland
autor
- Faculty of Electrical Engineering, Automation, Computer Science and Biomedical Engineering, AGH University of Krakow
autor
- Faculty of Electrical Engineering, Automation, Computer Science and Biomedical Engineering, AGH University of Krakow
Bibliografia
- [1] Al-Yasiri A. J., Global Energy Demand for Different Energy Sources: Current Status and Future Prospects, Akkad J. Contemp. Econ. Stud., vol. 1, no. 4, pp. 186–196 (2022), DOI: 10.55202/ajces.v1i4.96.
- [2] Vasiliu A., Nedelcu O., Magdun O., Sălişteanu I. C., A Study on the Energy Consumption of the Electrical and Electronic Household and Office Equipment in Standby and Off-Mode, Sci. Bull. Electr. Eng. Fac., vol. 21, no. 1, pp. 26–30 (2021), DOI: 10.2478/sbeef-2021-0006.
- [3] Yildiz F., Potential Ambient Energy-Harvesting Sources and Techniques, J. Technol. Stud., vol. 35, no. 1, pp. 40–48 (2009), DOI: 10.21061/jots.v35i1.a.6.
- [4] Tesla N., The Transmission of Electric Energy without Wires, Sci. Am., vol. 57, no. 1483supp, pp. 23760–23761 (1904), DOI: 10.1038/scientificamerican06041904-23760supp.
- [5] Naser S., Bariah L., Muhaidat S., Basar E., Zero-Energy Devices Empowered 6G Networks: Opportunities, Key Technologies, and Challenges (2023), DOI: 10.36227/techrxiv.21558030.v2.
- [6] Serdijn W. A., Mansano A. L. R., Stoopman M., Introduction to RF Energy Harvesting, Wearable Sensors, Elsevier, pp. 299–322 (2014), DOI: 10.1016/B978-0-12-418662-0.00019-2.
- [7] Chen D., Li R., Xu J., Li D., Fei C., Yang Y., Recent progress and development of radio frequency energy harvesting devices and circuits, Nano Energy, vol. 117, 108845 (2023), DOI: 10.1016/j.nanoen.2023.108845.
- [8] Pham B. L., Pham A.-V., Triple bands antenna and high efficiency rectifier design for RF energy harvesting at 900, 1900 and 2400 MHz, 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), Seattle, WA, USA: IEEE, pp. 1–3 (2013), DOI: 10.1109/MWSYM.2013.6697364.
- [9] Liu W., Huang K., Wang T., Zhang Z., Hou J., A Broadband High-Efficiency RF Rectifier for Ambient RF Energy Harvesting, IEEE Microw. Wirel. Compon. Lett., vol. 30, no. 12, pp. 1185–1188 (2020), DOI: 10.1109/LMWC.2020.3028607.
- [10] Kotani K., Sasaki A., Ito T., High-Efficiency Differential-Drive CMOS Rectifier for UHF RFIDs, IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3011–3018 (2009), DOI: 10.1109/JSSC.2009.2028955.
- [11] Chong G., Ramiah H., Yin J., Rajendran J., Mak P.-I., Martins R. P., A Wide-PCE-Dynamic-Range CMOS Cross-Coupled Differential-Drive Rectifier for Ambient RF Energy Harvesting, IEEE Trans. Circuits Syst. II Express Briefs, vol. 68, no. 6, pp. 1743–1747 (2021), DOI: 10.1109/TCSII.2019.2937542.
- [12] Ramalingam L., Mariappan S., Parameswaran P., Rajendran J., Sharma R., Aridas N. K., Nathan A., Yarman B.S., The Advancement of Radio Frequency Energy Harvesters (RFEHs) as a Revolutionary Approach for Solving Energy Crisis in Wireless Communication Devices: A Review, IEEE Access, vol. 9, pp. 106107–106139 (2021), DOI: 10.1109/ACCESS.2021.3098895.
- [13] Mahobia S. K., Kumrey G. R., Study and performance of single-phase rectifiers with various type of parameter, Int. J. Eng. Technol. Manag. Res., vol. 3, no. 1, pp. 9–14 (2020), DOI: 10.29121/ijetmr.v3.i1.2016.39.
- [14] Giannakas G., Plessas F., Stamoulis G., Pseudo-FG technique for efficient energy harvesting, Electron. Lett., vol. 48, no. 9, pp. 522–523 (2012), DOI: 10.1049/el.2011.3576.
- [15] Mandal S., Sarpeshkar R., Low-Power CMOS Rectifier Design for RFID Applications, IEEE Trans. Circuits Syst. Regul. Pap., vol. 54, no. 6, pp. 1177–1188 (2007), DOI: 10.1109/TCSI.2007.895229.
- [16] Taghadosi M., Albasha L., Quadir N.A., Rahama Y. A., Qaddoumi N., High Efficiency Energy Harvesters in 65nm CMOS Process for Autonomous IoT Sensor Applications, IEEE Access, vol. 6, pp. 2397–2409 (2018), DOI: 10.1109/ACCESS.2017.2783045.
- [17] Whitaker J. C., The RF transmission systems handbook, Electronics handbook series, Boca Raton, Fla.: CRC Press (2002), DOI: 10.1201/9781420041132.
- [18] Lau W. W. Y., Siek L., 2.45GHz wide input range CMOS rectifier for RF energy harvesting, in 2017 IEEE Wireless Power Transfer Conference (WPTC), Taipei, Taiwan: IEEE, pp. 1–4 (2017), DOI: 10.1109/WPT.2017.7953896.
- [19] Chouhan S. S., Nurmi M., Halonen K., Efficiency enhanced voltage multiplier circuit for RF energy harvesting, Microelectron. J., vol. 48, pp. 95–102 (2016), DOI: 10.1016/j.mejo.2015.11.012.
- [20] Oh S., Wentzloff D. D., A -32dBm sensitivity RF power harvester in 130nm CMOS, 2012 IEEE Radio Frequency Integrated Circuits Symposium, Montreal, QC, Canada: IEEE, pp. 483–486 (2012), DOI: 10.1109/RFIC.2012.6242327.
- [21] Li Y., Rajendran J., Mariappan S., Rawat A. S., Sal Hamid S., Kumar N., Othman M., Nathan A., CMOS Radio Frequency Energy Harvester (RFEH) with Fully On-Chip Tunable Voltage-Booster for Wideband Sensitivity Enhancement, Micromachines, vol. 14, no. 2, 392 (2023), DOI: 10.3390/mi14020392.
- [22] Mavaddat A., Armaki S. H. M., Erfanian A. R., Millimeter-Wave Energy Harvesting Using 4x4 Microstrip Patch Antenna Array, IEEE Antennas Wirel. Propag. Lett., vol. 14, pp. 515–518 (2015), DOI: 10.1109/LAWP.2014.2370103.
- [23] Karami M. A., Moez K., An Integrated RF-Powered Wake-Up Wireless Transceiver with –26 dBm Sensitivity, IEEE Internet Things J., vol. 9, no. 11, pp. 8693–8706 (2022), DOI: 10.1109/JIOT.2021.3116208.
- [24] Kuhn V., Lahuec C., Seguin F., Person C., A Multi-Band Stacked RF Energy Harvester with RF-to-DC Efficiency Up to 84%, IEEE Trans. Microw. Theory Tech., vol. 63, no. 5, pp. 1768–1778 (2015), DOI: 10.1109/TMTT.2015.2416233.
- [25] Visser H. J., Vullers R. J. M., RF Energy Harvesting and Transport for Wireless Sensor Network Applications: Principles and Requirements, Proc. IEEE, vol. 101, no. 6, pp. 1410–1423 (2013), DOI: 10.1109/JPROC.2013.2250891.
- [26] 5G; NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone (3GPP TS 38.101-1 version 18.6.0, Release 18), TS 138 101-1 (2024), https://portal.etsi.org/webapp/workprogram/ Report_WorkItem.asp?WKI_ID=72852, accessed: December 2024.
- [27] Reid A., Judd M., Stewart B., Fouracre R., Frequency distribution of RF energy from PD sources and its application in combined RF and IEC60270 measurements, 2006 IEEE Conference on Electrical Insulation and Dielectric Phenomena, Kansas, MO, USA: IEEE, pp. 640–643 (2006), DOI: 10.1109/CEIDP.2006.312013.
- [28] Radio Spectrum Allocation, Federal Communications Commission, https://www.fcc.gov/engineeringtechnology/policy-and-rules-division/general/radio-spectrum-allocation, accessed: March 2025.
- [29] GSM Bands information by country, World Time Zone, https://www.worldtimezone.com/gsm.html, accessed: December 2024.
- [30] Mazurek P. A., Naumchuk O. M., Electromagnetic emission testing in GSM band, 2017 International Conference on Electromagnetic Devices and Processes in Environment Protection with Seminar Applications of Superconductors (ELMECO & AoS), Nałęczów (Naleczow), Poland: IEEE, pp. 1–4 (2017), DOI: 10.1109/ELMECO.2017.8267730.
- [31] Bouchouicha D., Dupont F., Latrach M., Ventura L., Ambient RF Energy Harvesting, RE&PQJ, vol. 8, no. 1 (2024), DOI: 10.24084/repqj08.652.
- [32] ITU – Frequently Asked Questions, ITU., https://www.itu.int/net/ITU-R/terrestrial/faq/index. html {#} g013, accessed: December 2024.
- [33] ISM Bands Around the World, Altium, https://resources.altium.com/p/ism-bands-around-world, accessed: December 2024.
- [34] Short Range Devices (SRD) operating in the frequency range 25 MHz to 1 000 MHz; Part 1: Technical characteristics and methods of measurement, ETSI EN 300 220–1 (2024), https://www.etsi.org/deliver/etsi_en/300200_300299/30022001/03.01.01_60/en_30022001v030101p.pdf, accessed: December 2024.
- [35] Oh S.-S., Kim W.-S., Lee Y.-H., EIRP Characterization of Electrically Large Wireless Equipment with Integrated Signal Generator in a Compact Environment, Int. J. Antennas Propag., vol. 2015, pp. 1–5 (2015), DOI: 10.1155/2015/383925.
- [36] Ansorge R., Graves M., The Physics and Mathematics of MRI, Morgan & Claypool Publishers (2016), DOI: 10.1088/978-1-6817-4068-3.
- [37] Friis H. T., A Note on a Simple Transmission Formula, Proc. IRE, vol. 34, no. 5, pp. 254–256 (1946), DOI: 10.1109/JRPROC.1946.234568.
- [38] Joaquim M., Scheer S., Computation and visualization of three dimensional radiation patterns of antennas, 10th World Congress on Computational Mechanics (2014), pp. 2253–2261, DOI: 10.5151/mecengwccm2012-18769.
- [39] Kotzev M., Bi X., Kreitlow M., Gronwald F., Equivalent circuit simulation of HPEM-induced transient responses at nonlinear loads, Adv. Radio Sci., vol. 15, pp. 175–180 (2017), DOI: 10.5194/ars-15-175- 2017.
- [40] Szut J., Piątek P., Pauluk M., RF Energy Harvesting, Energies, vol. 17, no. 5, 1204 (2024), DOI: 10.3390/en17051204.
- [41] 5G; NR; Base Station (BS) radio transmission and reception (3GPP TS 38.104 version 18.6.0 Release 18), TS 138 104 (2024), https://portal.etsi.org/webapp/workprogram/Report_WorkItem.asp?WKI_ID= 72873, accessed: December 2024.
- [42] Personal Radio Services, Federal Communications Commission, https://www.fcc.gov/consumers/ guides/personal-radio-services-prs-keeping-touch, accessed: March 2025.
- [43] Powercast Demonstrates Broad Applications of Wireless Power at CES 2024, Powering Environmentally-Friendly Products Short to Long Range & Microwatts to Kilowatts, PR Newswire, https://www.prnewswire.com/news-releases/powercast-demonstrates-broad-applications-of-wirelesspower-at-ces-2024-powering-environmentally-friendly-products-short-to-long-range–microwatts-tokilowatts-302028396.html, accessed: December 2024.
- [44] Komarov V., Wang S., Tang J., Permittivity and Measurements, Encyclopedia of RF and Microwave Engineering, 1st ed., K. Chang Ed., Wiley (2005), DOI: 10.1002/0471654507.eme308.
- [45] Natural gas – Standard reference conditions, ISO 13443 (1996), https://cdn.standards.iteh.ai/samples/ 20461/7dd04c87717148468d2985ba4c5b7764/ISO-13443-1996.pdf, accessed: December 2024.
- [46] Serdijn W. A., Mansano A. L. R., Stoopman M., Introduction to RF energy harvesting, Wearable Sensors, Elsevier, pp. 299–322 (2014), DOI: 10.1016/B978-0-12-418662-0.00019-2.
- [47] Al Ahmad M., Kiranmai K. S. P., Alnuaimi A., Alyammahi O., Alkaabi H., Alnasri S., Dahir A., Enhanced RF Energy Harvesting System Utilizing Piezoelectric Transformer, in Sensors, vol. 24, no. 22, 7111 (2024), DOI: https://doi.org/10.3390/s24227111.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3539baf-ea2b-4b36-af6d-05891f72e530
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.