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1. Introduction

1.1. Description of the problem

We consider fluid-structure interaction described by a coupled system of partial
differential equations (PDEs) comprising a nonlinear Navier-Stokes equation
and a system of elasticity of wave equation. The coupling between two systems
occurs on the boundary-interface between two environments: fluid and a solid.
This model is well established in the literature and has numerous engineering
applications that range from naval and aerospace engineering to cell biology
and biomedical engineering see Moubachir & Zolesio (2006), Caputo & Hammer
(2002), Khismatullin & Truskey (2005), Fernandez & Moubachir (2003), Du et
al. (2003), and references therein.

However, due to mismatch of regularity between the particular hyperbolic
component (dynamic system of elasticity) and parabolic component (fluid) the
basic mathematical questions such as well-posedness of finite energy physical so-
lutions had not been resolved until recently (Barbu et al., 2007, 2008; Kukavica
et al., 2009, 2011; Coutand & Shokller, 2005). It is known by now that weak (fi-
nite energy) solutions corresponding to fluid structure interaction exist globally
and they are unique when the dimension of the domain is equal to two. Thus,
in the two dimensional case there exist a well defined semi-flow describing the
associated dynamical system. In addition, it has been recently shown (Lasiecka
& Lu, 2012) that the corresponding flow can be exponentially stabilized by a
linear feedback placed at the interface between the solid and the fluid.

The main aim of this paper is to consider nonlinear feedback in a form
of frictional damping affecting the solid-rather than the interface. We shall see
that this configuration leads to new aspects of the theory exhibiting an interplay
between the geometry of the domain (partial flatness of the contact area) and
the effects of pressure in the N-S equation. The nonlinearity of the dissipation
contributes to a more complex structure of decay rates for the energy which are
still uniform but not necessarily exponential. They depend on the strength of
the friction in the regime of small velocities.

1.2. The model

The model is defined on a bounded domain Ω ∈ R
2 that describes the interaction

between an elastic body and a surrounding incompressible viscous fluid. Ω is
a bounded simply connected domain, consisting of two open sub-domains Ωs

and Ωf where Ωf is the exterior domain, filled with fluid, and Ωs is the interior
doma, occupied by the elastic solid. The interaction between the fluid and the
solid occurs at the interface Γs ⊂ ∂Ωs. The external boundary of Ω is denoted
by Γf .

The dynamics of the fluid is described by the Navier-Stokes equation and
the dynamics of the elastic body is described by an elasto-dynamic system of
wave equations. u(t, x) ∈ R

2 is a vector-valued function representing the ve-
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Figure 1. Geometry of Ω.

locity of the fluid and p(t, x) is a scalar-valued function representing pressure.
w(t, x), wt(t, x) ∈ R

2 denotes the displacement and the velocity functions of the
elastic solid Ωs. ν denotes, the unit outward normal vector on ∂Ωs with respect
to the region Ωs. see Fig. 1.
This leads to the following interactive PDEs defined for the state variables
[u,w,wt, p], Lions (1988):






ut −△u+ (u · ∇)u +∇p = 0 in Ωf × (0,∞)

div u = 0 in Ωf × (0,∞)

wtt = △w − g(wt) in Ωs × (0,∞)
∂w

∂ν
+ αw =

∂u

∂ν
− pν +

1

2
(u · ν)u on Γs × (0,∞)

∂w

∂ν
+ αw =

∂u

∂ν
− pν +

1

2
(u · ν)u = 0 on ∂Ωs \ Γs × (0,∞)

u = wt on Γs × (0,∞)

u = 0 on Γf × (0,∞)

u(0, ·) = u0 in Ωf

w(0, ·) = w0, wt(0, ·) = w1 in Ωs

(1)

where g(wt) represents an interior viscous-frictional nonlinear feedback - a typ-
ical damping mechanism present in oscillating structures. It will be assumed
that g(·) is monotone, continuous and of polynomial growth, with g(0) = 0. In
this model the fluid interacts with the solid on Γs, this fact being reflected by
matching the velocities and matching the stresses. On ∂Ωs \Γs (possibly empty
set) one assumes a hard contact.

The model considered accounts for small but rapid oscillations of the elastic
displacements (Du et al., 2003). This allows one to assume that the interface is
static.
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It is convenient at this stage to introduce the energy of the system

E(t) ≡
1

2

∫

Ωf

|u|2dx+
1

2

∫

Ωs

(|∇w|2 + |wt|
2)dx+

1

2
α

∫

∂Ωs

|w|2dx. (2)

The main goal of this article is to establish asymptotic stability and energy
decay rates for system (1). One should notice at the outset that without a
static feedback the so called steady states corresponding to w = constant and
u = 0 always satisfy the equations (they are not ”felt” by the dynamics). These
data produce non-decaying in time solutions. Thus a challenge is to ”filter
out” these states by considering the complementary dynamics. In the linear
case, it is a classical procedure to separate steady states from the state space
(by orthogonal spectral decomposition) and then to consider the dynamics on
the complementary-decaying phase space. The success of this procedure is due
to local time invariance of the corresponding state spaces (due to linearity),
Avalos & Triggiani (2007). However, in the nonlinear case, there is a possibility
of ”mixing” the states and such invariance no longer holds. As the result, the
states that in the linear dynamics would lead to solutions constant in time, in
the nonlinear case can be exploding in time. In fact, they can start growing
polynomially or even exponentially. In order to illustrate this phenomenon
it is constructive to look at the following benchmark problem involving wave
equation only:




wtt −△w + g(wt) = 0, in Ω
∂w

∂ν
= 0, on ∂Ω

(3)

where Ω is a bounded domain in an Euclidean space and g is a continuous
and monotone increasing function. The energy identity is given by Ẽ(t) +∫ t

0

∫
Ω
g(wt)wtdΩds = Ẽ(0), with the energy functional Ẽ(t) defined as

Ẽ(t) =
1

2

[
‖∇w(t)‖2L2(Ω) + ‖wt(t)‖

2
L2(Ω)

]
.

Clearly, w(t) ≡ C, C: a constant, is a zero energy solution. However, it
might generate solutions that will eventually blow up. To see this, let g(s) = sp

(p 6= 1). Suppose w(t, x) ≡ Cf(t) is a solution of (3). Then, f(t) satisfies the
equation

Cftt + g(Cft) = 0.

Solving the equation yields f(t) = C−1[Cp(t+c1)
p−2

p−1 +c2], p 6= 1. Thus, where

w(t, x) = Cp(t+ c1)
p−2

p−1 + c2, p 6= 1,

w(t, x) is a finite energy solution if p > 1, since wt(t, x) ∼ t−
1

p−1 → 0 as t→ ∞,

thus Ẽ(t) → 0 as t → ∞. However, if p > 2, the solution will eventually blow
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up: w(t, x) ∼ t
p−2

p−1 → ∞, as t→ ∞.

Thus, there is no method available in the nonlinear case which separates
the analysis into stable and unstable parts, according to the spectrum of the
linear operator. However, it is conceivable that while some solutions may grow
in time, the energy of the system should be conserved or decaying (as for the
constant states). And it is the energy that is of main interest to applications. In
view of the above, our goal is to develop a method, which allows for separating
the energy asymptotics from the solution asymptotics. This being the case, our
task becomes to show that the energy E(t) given in (2) decays to zero (while
some of the solutions may still blow up at infinity). Depending on the strength
of the frictional damping g(wt) we shall consider both strong decay and uniform
decay of the energy function given by (2) with α ≥ 0.

1.3. Challenges

The major mathematical difficulty stems from the mismatch between the bound-
ary regularity of the hyperbolic wave equation and the parabolic Navier-Stokes
equation, which does not provide sufficient regularity for the boundary traces.
In dealing with this particular difficulty, several strategies have been developed
in earlier mathematical literatures where either a structural damping is added
to the wave equation or a very smooth local-in-time solution were considered.
Only recently the existence, uniqueness (in two dimensions), of the solutions
in the natural energy level were shown to hold, Barbu et al. (2007). This was
accomplished by taking advantage of recently discovered hyperbolic trace the-
ory (Lasiecka, Lions & Triggiani, 1986) applied on the interface of the structure.
Regularity of weak solutions was subsequently developed in Barbu et al. (2008),
and also in Kukavica, Tuffaha & Ziane (2009, 2011) for a slightly different topo-
logical setting. Smooth solutions with moving interface have been analyzed in
Coutand & Shokller (2005).

In the context of stability, stability results are available for the linearized
model with the presence of pressure: strong stability in Avalos & Triggiani
(2007, 2008, 2009a). The main tool used to establish the strong stability re-
sults for linear models is spectral theory (Arendt & Batty, 1988), which has no
extension to nonlinear models. Subsequently, the study of nonlinear effects has
been undertaken. The nonlinearity of the fluid model and the presence of the
pressure term in the fluid equation are two main new aspects and challenges of
the analysis. First stability results for the nonlinear fluid-structure interaction
(1) are obtained in Lasiecka & Lu (2011, 2012). In all these works only lin-
ear damping mechanisms were considered. As demonstrated by the example,
nonlinear damping plays major role in building growing in time solutions. The
analysis of this delicate situation is the main contribution of the present paper.
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2. Preliminaries and main results

Before introducing the main results, we will review some preliminary definitions
and results.

2.1. Phase space and energy functional

As in Barbu et al. (2007), we define the following key spaces:

H ≡ {u ∈ [L2(Ωf )]
2 : div u = 0}, V ≡ H ∩ [H1

f (Ωf )]
2

and the finite energy space for state variables [u,w,wt]
T :

H ≡ H × [H1(Ωs)]
2 × [L2(Ωs)]

2

where H1
f (Ωf ) denotes H1(Ωf ), Sobolev space with zero boundary conditions

imposed on the boundary Γf . Later on, we shall also use the space H1
d(Ωs)

which denotes H1(Ωs) space with the compatibility condition
∫
Γs
w|Γs

· νds = 0

H1
d(Ωs) ≡ {w ∈ H1(Ωs);

∫

Γs

w · νdΓs = 0}, Hd ≡ H × [H1
d (Ωs)]

2 × [L2(Ωs)]
2.

The following (standard) notations will be used:

(u, v)f =

∫

Ωf

uv dΩf , (u, v)s =

∫

Ωs

uv dΩs

〈u, v〉 =

∫

Γs

uv dΓs; 〈u, v〉∂Ωs
=

∫

∂Ωs

uv d∂Ωs.

|u|α,D = |u|Hα(D), |u|f = |u|0,Ωf
, (u, v)1,f ≡

∫

Ωf

∇u · ∇v dΩf

Qs ≡ (0, T ]× Ωs; Qf ≡ (0, T ]× Ωf ; Σs ≡ (0, T ]× Γs; Σf ≡ (0, T ]× Γf .

2.2. Existence, uniqueness and regularity of finite energy solutions

Motivated by feedback stabilization results for the pure wave equation (Lagnese,
1983; Haraux, 2006; Lasiecka, 2002; Komornik, 1998), a natural feedback to
consider is in the a form of a frictional damping subject to the following as-
sumptions:

Assumption 1. The function g(s) = [gi(si)]i=1,2 , where gi(si), si ∈ R are
monotone increasing, continuous functions, zero at the origin and subject to the
following conditions for |s| ≥ 1

m|si|
2 ≤ gi(si)si, |g(s)| ≤M |s|p, p ≥ 1

for some positive constants m > 0,M <∞
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Remark 1. 1. Note that no growth conditions are imposed on the damping
function at the origin. This is one of the issues when dealing with questions of
stability and decay rates (Lasiecka & Tataru, 1993).
2. One could impose more general structure of monotone frictional damping
allowing for mixing of the wave coordinates. However, the main challenges of
the problem are present already in this special configuration. In order to focus
reader’s attention we shall consider this form only. For more general structures
of frictional damping, acting on the wave vectors we refer the reader to Chueshov
& Lasiecka (2010).

Projecting the equations on H and utilizing the boundary conditions enables
defining weak solutions of the fluid component to our PDE system:

d

dt
(u, φ)f+〈

∂w

∂ν
, φ〉+α〈w,φ〉+(∇u,∇φ)f+((u·∇)u, φ)f−〈

1

2
(u·ν)u, φ〉∂Ωs = 0, ∀ φ ∈ V

(4)

We recall some results describing well-posedness and regularity of finite en-
ergy solutions. Global-in-time existence of the weak solutions is obtained in
Barbu et al. (2007).

Theorem 2.1. (Existence and uniqueness of weak solutions Barbu et al., 2007)
Given any initial condition (u0, w0, w1) ∈ H, and any T > 0, there exists unique
weak (finite energy) solution (u,w,wt) ∈ Cw([0, T ],H) to the system (1) with
the following additional properties:

1. u ∈ L2(0, T ;V ), ut ∈ L2(0, T ;V
′), wtt ∈ L2(0, T ; [[H

1(Ωs)]
2]′),

u|Γs
= wt|Γs

2. g(wt)wt ∈ L1(Qs), wt|Γs
∈ L2((0, T ); [H

1/2(Γs)]
2).

Moreover, the said solution depends continuously on the initial data (with
respect to the topology induced by H).

Finite energy solutions are constructed as limits of monotone approximations
to Navier Stokes problem. More specifically, the nonlinear N-S term is truncated
so that the resulting problem is maximally monotone. Weak solutions are shown
to be strong limits of these approximations Barbu et al. (2007). In carrying
out this argument for wave equation with nonlinear dissipation, critical role is
played by monotonicity of function g(s).

Remark 2. The boundary condition representing matching of velocities on Γs:
wt = u, on Γs implies that the subspace Hd ⊂ H is invariant under the flow.
Thus, the statement of Theorem 2.1 holds true with H replaced by Hd.

Remark 3. When g(wt) ∈ L2(Ω), one can also show, Barbu et al. (2007) that

weak solutions satisfy
∂w

∂ν
∈ L2((0, T ); [H

−1/2(Γs)]
2).
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Additional regularity including differentiability of weak solutions is asserted
in Barbu et al. (2008) (see also Kukavica, Tuffaha & Ziane, 2009, for different
topological configuration) for solutions with more regular initial data. In fact,
in that case (u,w,wt) satisfies the variational form of the original PDE equation
a.e. in t ∈ (0, T )

(ut, φ)f+〈
∂w

∂ν
+αw, φ〉+(∇u,∇φ)f+((u·∇)u, φ)f−〈

1

2
(u·ν)u, φ〉∂Ωs = 0, ∀ φ ∈ V (5)

(wtt, ψ)s−〈
∂w

∂ν
, ψ〉+α〈w,ψ〉∂Ωs\Γs

+(∇w,∇ψ)s+(g(wt), ψ)s = 0, ∀ ψ ∈ [H1(Ωs)]
2.

(6)

Theorem 2.2. (Regularity Barbu et al., 2008) Let (u0, w0, w1) ∈ H∩{([H2(Ωf )]
2∩

V × [H2(Ωs)]
2× [H1(Ωs)]

2)} satisfy the usual boundary compatibility conditions
imposed on the boundary. Then, for any T > 0, (u,w,wt) satisfies the varia-
tional form (5), (6), and we have :

1. (u, p) ∈ L2((0, T ); [H
2(Ωf )]

2 ×H1(Ωf ))
2. (ut, wt, wtt) ∈ L∞((0, T );H), w ∈ L∞((0, T ); [H2(Ωs)]

2).

Theorems 2.1 and 2.2 were proved in Barbu et al. (2007, 2008) without the
damping g(wt). However, the same proof can be carried out in the presence of
frictional damping that is assumed monotone and subject to polynomial growth
condition when dimension of Ω is equal to two.

2.3. Energy functional and energy identity

Let u,w be regular solutions obtained in Theorem 2.2. Choose as the test
functions φ = u and ψ = wt in the formulation (5)-(6). Noticing cancellation
occurring in the nonlinear term

((u · ∇)u, u)f − 〈
1

2
(u · ν)u, u〉∂Ωs

= 0

and utilizing the transmission condition u = wt on Γs, one obtains the following
energy identity for 0 ≤ s ≤ t

E(t) +

∫ t

s

(|∇u|2f + (g(wt), wt)s)dτ = E(s), 0 ≤ s < t (7)

where E(t) is the energy functional defined in (2). Denote the dissipation terms
in (7) as

D(t) = |∇u(t)|2f + (g(wt), wt(t))s.

The energy identity can be rewritten as
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E(t) +

∫ t

s

D(τ)dτ = E(s), 0 ≤ s < t (8)

this relation revealing the dissipative character of the evolution. Few observa-
tions are in order.

1). The energy identity (7) reveals that there are two potential sources of
dissipation: one propagated from the Navier-Stokes equation and the other from
the dynamic damping g(wt). Without the dynamic damping, the energy does
not decay. This is the case, even in the linear case when one can show that there
are infinitely many eigenvalues with real parts on the imaginary axis (Avalos
& Triggiani, 2007, 2009b). Strong stability has been shown in Avalos & Trig-
giani (2007) under a suitable geometric condition and for initial data restricted
to a closed subspace of H, which eliminates a subspace corresponding to zero
eigenvalue of the linear generator. The corresponding condition is the following:
Γs contains a flat portion Γ0 with positive measure. We note that the above
condition fails when Ω is a ball. Thus, the aforementioned condition is not com-
patible with a perfect symmetry of the domain.

2). The energy functional E(t) with α = 0 is only a semi-norm on the phase
space H. Thus, there could be zero energy solutions which might have nonzero
displacement of the solid. One could eliminate these by adding some static
damping (Lasiecka & Lu, 2012) or by assuming that α > 0 . In this latter case
the energy functional determines a full norm on the phase space H, a result of
Poincaré’s inequality and trace theory. How to eliminate nonzero steady states,
without adding static damping will be one of the major issues we will contend
with in this paper.

2.4. Main results

Detailed statements of our main results are given in the following theorems. We
begin by formulating the following Geometric Assumption.

Assumption 2. (a) Γs contains a flat portion Γ0 with positive measure;

(b) EITHER Γs is a strict subset of ∂Ωs such that

∫

Γs

νdΓs 6= 0, OR Γs = ∂Ωs.

Theorem 2.3. (Strong Stability of Energy) Let α ≥ 0 and let impose
geometric Assumption 2. Then, for any initial data (u0, w0, w1) ∈ H when Γs ⊂
∂Ωs, (respectively Hd when Γs = ∂Ωs), one obtains that the energy functional
for the system (1) tends to 0 as t→ ∞. This is to say:

E(t) → 0 as t → ∞. (9)
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Theorem presented above is an extension of the corresponding result ob-
tained in Lasiecka & Lu (2011), where the structure equation was assumed
linear.

Knowing that the energy converges strongly to zero, one would like to know
how fast this convergence occurs. This corresponds to the question of decay
rates. Under additional assumption, imposed on the damping, one obtains
uniform decay of energy with the rates determined by a solution of nonlinear
ODE.

Theorem 2.4. (Uniform Decay Rates for the Energy). Let α ≥ 0. We
assume Assumption 1 and part (b) of geometric Assumption 2.
Then, there exists constant T0 > 0, such that the energy satisfies

E(t) ≤ S(t), for t > T0

where S(t) satisfies the following ODE:

d

dt
S(t) + q(S(t)) = 0, S(0) = E(0) (10)

with q(s) ∼ ĥ−1(s) where ĥ(s) = (meas Qs) h(
s

meas Qs
) with h monotone

increasing, continuous, h(0) = 0, concave and determined from the inequality
s2 ≤ h(sg(s)), |s| ≤ 1 .
When Γs = ∂Ωs, we take the initial data in Hd.

Remark 4. Note that owing to monotonicity of g(s) function h(s), can be al-
ways constructed as a concave envelope (Lasiecka & Tataru, 1993). Function
h(s) captures the behavior of the dissipation g(s) at the origin. This is the most
sensitive region with respect to the decay rates. Thus, the task of finding decay
rates is reduced to solving an ODE (10) with a given function h(s) (hence q(s)) .

In fact, when g(s) = as, then h(s) = a−1s and the decay rates are expo-
nential of the type e−at. For polynomial g(s) at the origin, the decay rates are

polynomial as well (algebraic) t−
2

p−1 . These are optimal algebraic decay rates.
See Lasiecka & Tataru (1993) for many examples.

Remark 5. Note that Theorem 2.4 does not require partial flatness assumption
(part (a) of Assumption 2). This is due to the fact that the presence of damping
g(s) under the Assumption 1 eliminates the dynamics from the ω limit set.

Remark 6. In the case when Γs = ∂Ωs and the initial data are not restricted
to Hd (so that condition (b) of Assumption 2 is violated), the proof of Theorem
2.3 shows convergence of each energy solution to a one dimensional manifold
spanned by a vector (0, w∗, 0) ∈ H, where w∗ is a solution to the following elliptic



Stabilization of nonlinear fluid-structure interaction 165

problem:

∆w∗ = 0, in Ωs

∂w

∂ν

∗

= ν, on Γs. (11)

Remark 7. The dimensionality of the domain is restricted to two for differ-
ent reasons. For strong stability, the argument depends on the locally Lipschitz
property of the flow on the phase space H, which does not hold in three dimen-
sional space. For uniform stability, the method used does not depend on the
dimensionality of the domain. However, when n = 3, weak solutions are not
known to be unique, thus the decay rates obtained for strong solutions only can
not be extended to all weak solutions. In that case the result remains valid for
smooth solutions which are global (e.g. corresponding to small initial data-as
shown in Barbu et al., 2008).

3. Strong stability with weak or without frictional damp-

ing - Proof of Theorem 2.3.

In this section, we will establish strong stability for the model with weak fric-
tional damping. We will show that under the geometric condition, as specified
by Theorem 2.3, the kinetic and potential energy E(t) decays to zero when time
goes to infinity.

3.1. General comments

The model without the frictional damping possesses a few distinct features in
the context of strong stability: (a) the dissipation is weak ; (b) the resolvent
operator is not compact; (c) the dynamics is partially hyperbolic. These fea-
tures render the standard tools used for the study of strong stability of nonlin-
ear systems not applicable in the present situation. Indeed, a classical tool is
LaSalle’s Invariance Principle (La Salle, 1976). A key hypothesis assumed by
this principle (and its variants) is the compactness of the orbits, often secured
by the compactness of the resolvent of the semigroup generated by the flow.
However, this latter property, while typical in parabolic flows, does not hold in
hyperbolic-like dynamics, e.g. the wave equation component in the system we
consider. Some known nonlinear methods (Ball, 1977, 1978; Brezis, 1978) for
studying asymptotic stability require one of the following conditions to be satis-
fied: (i) semigroup associated with the linearization be ”smoothing” (parabolic
like situation), or (ii) the nonlinear generator be m-monotone, or (iii) lineariza-
tion be exponentially stable, or (iv) linear generator be monotone and nonlinear
perturbation weakly sequentially compact. In the case of the model under con-
sideration neither of these options is available.
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The approach we develop is motivated by a relaxed version of LaSalle’s In-
variance Principle (Slemrod, 1989), based on the concept of ’relaxed’ ω-limit set,
which yields strong stability in a suitable weakened topology. In order to follow
this route, as mentioned earlier, we will first transform the system, following
the method introduced in Lasiecka & Seidman (2003). Once the correct dy-
namical system is identified, we shall show that this system admits a ”relaxed”
ω-limit set containing only the trivial solution. The main technical difficulties
that need to be addressed are: (1) to improve weak into strong convergence -
a challenging endeavor in the absence of compactness, and (2) to identify ω-
limit sets with suitable equilibria of coupled dynamics. The first task will be
handled by exploiting suitable multipliers that are harmonic extensions of the
Stokes operator. The second task relies on the geometric conditions ensuring
an appropriate version of unique continuation property for the overdetermined
on the boundary system.

3.2. Change of variables

We focus on a more challenging case when α = 0. We shall mainly treat the case,
when Γs ⊂ ∂Ωs and the initial data are taken from H. The (minor) differences
in the arguments for the case when the initial data are in Hd and Γs = ∂Ωs will
be commented in the corresponding Remarks.

Since the energy relation provides information only on the gradient of the
displacement (without controlling the entire L2 norm, where the latter may
increase in time), we will construct a new dynamical system which accounts
for the ”degeneracy” of the energy. To achieve this we shall use the approach
introduced in Lasiecka & Seidman (2003). We consider the space defined as

H0 ≡ H × U × [L2(Ωs)]
2

where

U ≡ L2
∇(Ωs) ≡ {∇h, h ∈ [H1(Ωs)]

2}.

Note, that L2
∇(Ωs) is the space of vector tensors of order four, i.e. ∇h =(

∇h1
∇h2

)
. As shown in Lasiecka & Seidman (2003), L2

∇(Ωs) is a closed subspace

of [L2(Ωs)]
2 × [L2(Ωs)]

2 and so is a Hilbert space. With the above notation (in
the sequel we shall omit explicit writing of multiple copies of the vector spaces),
we shall rewrite the original system as a dynamical system governed by the
variables (u(t),Ξ(t), v(t)) ∈ H0 which satisfy: fluid equation in the variable

u ∈ H :

(ut, φ)f + 〈Ξ · ν, φ〉+ (∇u,∇φ)f + ((u · ∇)u, φ)f − 〈
1

2
(u · ν)u, φ〉∂Ωs = 0, ∀ φ ∈ V (12)
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and solid equation in the variable (Ξ, v) ∈ L2
∇(Ωs)× L2(Ωs) :





Ξt = ∇v, in Ωs × (0,∞)

vt = ∇ · Ξ + g(v), in Ωs × (0,∞)

v|Γs
= u|Γs

, on Γs × (0,∞)

Ξ · ν = 0, on∂Ωs \ Γs

. (13)

The equivalent variational form is the following:

(ut, φ)f − 〈Ξ · ν, φ〉+ (∇u,∇φ)f + ((u · ∇)u, φ)f − 〈
1

2
(u · ν)u, φ〉∂Ωs = 0, ∀ φ ∈ V

(Ξt,Ψ)s = (∇v,Ψ)s, ∀Ψ ∈ L
2
∇(Ωs)

(vt, ψ)s = 〈Ξ · ν, ψ〉 − (Ξ,∇ψ)s + (g(v), ψ)s, ∀ψ ∈ H
1(Ωs)

with the transmission condition v|Γs = u|Γs . (14)

(14) is supplied with the initial conditions:

u(0) = u0 ∈ H,Ξ(0) = Ξ0 ∈ L2
∇(Ωs), v(0) = v0 ∈ L2(Ωs)

Time derivatives are defined distributionally. It is clear that every solution
(u,w,wt) of the original problem corresponds to (u,Ξ, v) with the identification:
Ξ = ∇w, v = wt. Also, having given variable (u,Ξ, v), we can easily reconstruct

w from w(t) = w(0) +
∫ t

0 v(s)ds. Of course, the latter quantity may not be
bounded in time when t→ ∞.
In what follows we consider the system defined by (14).

• Energy identity and energy functional for the transformed dy-

namics. Energy method applied to strong solutions of (14), i.e. taking φ =
u,Ψ = Ξ, ψ = v gives

E0(t) +

∫ t

0

[|∇u|2f + (g(v), v)s]ds = E0(0)

where

E0(t) ≡
1

2

[
|u|2f + |Ξ|2s + |v|2s

]
.

Thus, the energy function defines a norm on H0 defined above. In fact,
”both” energies for the original system and the transformed one are the same.
The original system defined in the variables (u,w,wt) corresponds in a one to
one manner to a ”new” system (u,Ξ, v) where u = u,Ξ = ∇w, v = wt.

Due to the invariance of the flow, defined by (14) on H0, by Theorem 2.1 we
can construct a nonlinear semigroup S0(t) : H0 → H0 such that

S0(t)(u0,Ξ0, v0) = (u(t),Ξ(t), v(t)), ∀(u0 ,Ξ0, v0) ∈ H0.



168 I. Lasiecka, Y. Lu

Then, (S0(t),H0) defines a dynamical system, Chueshov & Lasiecka (2008).
Similarly, we define nonlinear semigroup on H0d where the U component is
replaced by Ud = {∇h, h ∈ [H1

d(Ωs)]
2}.

We define the following weak ω-limit set and the set D-invariant under the
flow and representing smooth data.

Definition 1. (weak ω-limit set) Let (u(t), w(t), wt(t)) be weak solution of (1),
specified in Theorem 2.1, corresponding to the initial data (u,Ξ, v) ∈ H0. We
say that a point (u0,Ξ0, v0) ∈ H0 is in the weak ω-limit set ω(u0,Ξ0, v0) if
there exists a sequence tn → ∞ such that (u(tn), v(tn)) → (u0, v0) strongly in
L2(Ωf )× L2(Ωs) and Ξ(tn)⇀ Ξ0 in L2

∇(Ωs).

Definition 2. (Smooth data) We say the data (u0,Ξ0, v0) ∈ H is smooth, if it
is contained in the following set D:

D = {(u0,Ξ0, v0) ∈ V × L2
∇(Ωs)×H1(Ωs) such that

PH∆u0 ∈ L2(Ωf ), div Ξ0 ∈ L2(Ωs), Ξ0 ·ν ∈ H−1/2(Γs),Ξ0 ·ν = 0, on ∂Ωs\Γs

u0|Γs
= v0|Γs

, 〈Ξ0 · ν −
∂u0

∂ν
+

1

2
(u0 · ν)u0, φ〉 = 0, φ ∈ V }

where PH denotes a projection operator on H . Exploiting monotonicity of
the damping g(v), polynomial growth condition which gives g(v) ∈ L2(Ωs) for
v ∈ V ⊂ Lr(Ωs) with any r < ∞ and the energy method applied to time
derivatives of solutions gives

Lemma 3.1. Let (u0,Ξ0, v0) ∈ D. Then (ut,Ξt, vt) ∈ L∞((0,∞),H0).

Set D is invariant under the dynamics. This claim can be easily seen from
Lemma 3.1 after performing energy calculations for time derivatives of solutions
and appealing to monotonicity of g(s) and Sobolev’s embeddings controlling
invariance of nonlinear terms.

3.3. Weak ω-limit is {0} for smooth initial data in D

In this section, we will show that the dynamical system (14) admits a weak
ω-limit set which is zero in the topology of H0. We should first point out that
the weak ω-limit set is not empty, since V × H1(Ωs) is strongly compact in
H ×L2(Ωs) and boundedness of Ξn in L2

∇(Ωs) implies existence of weakly con-
vergent subsequence Ξn,k in L2

∇(Ωs).

Let (u0,Ξ0, v0) be an element in ω(u0,Ξ0, v0) for (u0,Ξ0, v0) ∈ D. By defini-
tion, there exists a sequence tn → ∞ such that (u(tn), v(tn)) → (u0, v0) strongly
in L2(Ωf ) × L2(Ωs) and Ξ(tn) ⇀ Ξ0 weakly in L2

∇(Ωs), where X(t;X0) :=
(u(t),Ξ(t), v(t)) is a solution with the initial data X0 = (u0,Ξ0, v0). For this
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sequence tn, consider the translateXn(t) := X(t+tn;X0). From energy identity
(7),

‖Xn(t)‖H0
≤ ‖X0‖H0

, for all t ∈ R
+

Xn is a bounded sequence in L∞((0,∞);H0). Thus, Xn has a subsequence,
which we still denote by Xn := (un,Ξn, vn), such that Xn converges to X :=
(u,Ξ, v) weakly in L2((0, T );H0) and weak* in L∞((0,∞);H0). We will first
show that u = 0. Energy inequality (7 ) and invariance of the dynamics on D
imply the following:

Lemma 3.2. un → 0 in C((0, T ], V ) and g(vn)vn → 0 in L1(0, T, L1(Ω)) for
each T ≥ 0.

The convergence of un obtained in Lemma 3.2 allows us to pass to the
limit in the weak formulation (14) and it turns out that [Ξ, v] satisfies a special
Dirichlet -Stokes problem stated in the following lemma whose proof is technical
(see Lasiecka & Lu, 2011).

Lemma 3.3. [Ξ, v] is a weak solution of the following problem:





Ξt = ∇v in Ωs × (0, T1)

vt = ∇ · Ξ in Ωs × (0, T1)

v = 0, Ξ · ν = p(t)ν on Γs × (0, T1)

Ξ · ν = 0 on ∂Ωs \ Γs × (0, T1)

(15)

with initial condition [u(0),Ξ(0), v(0)] = [u0,Ξ0, v0] ∈ D and p ∈ L∞(0, T1),
where T1 is arbitrary.

Our next step is to analyze the overdetermined problem (15) and show that
the solution to (15) is stationary. We have the following Lemma:

Lemma 3.4. With reference to system (15) the overdetermined on the boundary
the following hold:

• Under part (a) of the Assumption 2 the energy E0(t) is a strict Lyapunov
function on H0. Solutions to (15) are stationary.

• Under the full strength of Assumption 2 the only solution of (15) is the
trivial one.

Proof. Let (Ξ, v) be a solution to the overdetermined problem specified in (15).
Let Dτ denote the tangential derivative applied to the flat portion of the bound-
ary Γ0 ⊂ Γs. Dτ is orthogonal to ν and commutes with ν on Γ0 (flatness as-
sumption). Dτ can be naturally extended into a small collar near Γs, denoted
by Ω0 ⊂ Ωs . We denote

Ξτ ≡ DτΞ, vτ ≡ Dτv, in Ω0.
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Exploiting the flatness of the boundary Γ0 we obtain the following system
satisfied for the new variables (Ξτ , vτ ) in Ω0,

Ξτ,t = ∇vτ , in Ω0

vτ,t = ∇ · Ξτ , in Ω0

Ξτ · ν = 0, vτ = 0, on Γ0. (16)

The above system can be reduced to the wave equation with the overdeter-
mined boundary data on Γ0:

vτ,tt = ∆vτ , in Ω0

vτ = 0,
∂vτ

∂ν
= 0, on Γ0. (17)

By the unique continuation property (Littman, 2000; Lions, 1988), we con-
clude that vτ = 0, in Ω0. Applying now the classical Holmgren’s Uniqueness
Theorem we extend local uniqueness to the global, claiming

vτ ≡ 0, in Ωs.

The above condition implies that v is constant in y. Therefore, for any fixed
x ∈ Ωs, v(x, y, t) = v(x, y∗, t) for any y∗ ∈ Γs, y ∈ Ωs and t ∈ R

+. But on the
boundary Γs, v is identically zero for all t. Thus,

v ≡ 0, in Ωs × R
+.

Going back to the original system we obtain that Ξt = ∇·v ≡ 0, which then
implies that E0(t) is a strict Lyapunov’s function on H0. This proves the first
part of the Lemma.

For the second part of the Lemma, we are led to consider the stationary
problem:

div Ξ = 0, in Ωs, Ξ · ν = pν, on Γs, Ξ · ν = 0 on ∂Ωs \ Γs (18)

with p being now just a constant. We shall show that p must be zero. This can
be seen as follows. The divergence theorem implies

∫

∂Ωs

Ξ · νdx = 0.

Zero boundary conditions on the complement of ∂Ωs \ Γs imply

∫

Γs

Ξ · νdΓs = 0.

Hence, p
∫
Γs
νdΓs = 0, which is impossible (due to the geometric condition∫

Γs
νdΓs 6= 0) unless p = 0. So we have div Ξ = 0, and Ξ · ν = 0 on the
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boundary Γs . Since Ξ ∈ L2
∇(Ωs) we have that Ξ = ∇h for some h ∈ H1(Ω).

This, along with (15), imply

∆h = 0, in Ωs,
∂h

∂ν
= 0, on ∂Ωs.

The above can happen only if h = constant. But then Ξ ≡ 0, proving that
both v ≡ 0, Ξ ≡ 0. This completes the proof of the second part of the Lemma.

Remark 8. When Γs = ∂Ωs and w ∈ Hd(Ωs), the divergence theorem applied
to (18) implies

0 = (div Ξ, w)s = −|Ξ|2s + 〈Ξ · ν, w〉 = −|Ξ|2s + p

∫

Γs

w · νdΓs = −|Ξ|2s

hence Ξ = constant and the remaining part of the argument is the same as
before .

Remark 9. In the case when the frictional damping is strong enough, so that

g(s)s = 0 ⇒ s = 0

one obtains the first part of Lemma 3.4 without any flattness geometric condi-
tion. However, we do not assume this property for the problem under consider-
ation. In fact, g(s) can be equal 0 .

Lemmata 3.4 and 3.3 imply the following important Corollary:

Corollary 1. Under the geometric Assumption 2 we have that weak ω limit
set for the dynamical system (S0(t),H0) consists of zero element only. This is
to say

(u,Ξ, v) ≡ 0, in H0, (respectivelyH0,d).

Remark 10. In the case when ∂Ωs = Γs, so that part (b) of the Assumption 2
fails, solutions to the overdetermined system (18) are characterized by:

div Ξ = 0, in Ωs,Ξ · ν = kν, on ∂Ωs (19)

where k ∈ R. These solutions are eigenvectors corresponding to the zero eigen-
value of the original linear generator (Avalos & Triggiani, 2007, 2009b), Thus,
in that case the weak ω limit set consists of a one dimensional manifold spanned
by solution to div Ξ = 0, in Ωs,Ξ · ν = ν, on ∂Ωs

3.4. Strong ω-limit set is {0} for smooth initial data in D

Our goal in this section is to improve weak convergence of Ξn(s) in L
2
∇(Ωs) to

the strong convergence.
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Lemma 3.5. Assume the geometric conditions imposed by Assumption 2. Then
for all initial data in D, we have that (un(t),Ξn(t), vn(t)) → 0, strongly in H0,
for all t ∈ [0, T ].

Proof. It suffices to show that the convergence of Ξn to zero is strong in L2
∇(Ω).

Here the idea is to utilize certain harmonic extensions associated with the Stokes
operator. To this aim we define the following Stokes extension of the Dirichlet
map D

z = Dg ⇔





△z = ∇q, div z = 0 in Ωf

z = g on ∂Ωs

z|Γf
= 0 on Γf

(20)

where we assume the compatibility
∫
∂Ωs

g · νds = 0. Stokes theory (Temam,

1977) gives that D : Hα(∂Ωs) → Hα+ 1

2 (Ωf ) is well defined and continuous. In

particular, D is continuous from H
1

2 (∂Ωs) to V .

By the definition of L2
∇(Ωf ), we have that Ξn = ∇hn for some hn ∈ H1(Ωf ).

Let Pw denote the average operator given by

Pw =
1

|Ωs|

∫

Ωs

w(x)dx, ∀w ∈ L1(Ωs).

Define
wn ≡ hn − Phn → ∇wn = Ξn.

With this selection we have that

∇wn(t) = Ξn(t)⇀ 0 in L2
∇(Ωs), ∀t ∈ [0, T ]. (21)

By Poincaré-Wirtenberg type inequality we infer that for all t ∈ [0, T ]

|wn(t)|s ≤ C|∇wn(t)|s = C|Ξn(t)|s. (22)

Indeed, the latter follows from the usual compactness-uniqueness argument,
where uniqueness depends on the property that Ξn = 0 → wn = 0. Thus, by
Lemma 3.4, (22) and Rellich-Kondratiev Theorem, we infer that for all t ∈ [0, T ]

wn(t) → 0 strongly in H1−ǫ(Ωf ), ∀ǫ > 0. (23)

In (14) choose for test functions ψ = wn and φ = Dgn, where gn ≡ wn|Γs
on Γs

with smooth extension to ∂Ωs, so that the compatibility condition
∫
∂Ωs

gn·νds =

0 holds and H1/2(∂Ωs) norms of the extension are controlled by the same norms
wn|Γs

.
We thus have: Dgn ∈ C(0, T ;H1(Ωf )) and since wnt|Γs

= vn|Γs
− Pvn =

un|Γs
− Pvn, we also have Dgnt ∈ C(0, T ;H1(Ωf )).

As a consequence

Dgn ⇀ 0 in H1(Ωs), ∀t ∈ [0, T ]. (24)
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Remark 11. Note that when ∂Ωs = Γs, then for hn ∈ H1
d(Ωs) one automatically

obtains compatibility condition
∫
Γs
wn · ν =

∫
Γs
(hn − Phn) · ν = 0.

Applying variational inequalities with test functions φ = Dgn and ψ = wn,
adding the resulting equalities and accounting for a cancellation of the boundary
terms gives for t ∈ R

+:

(ut,n(t), Dgn(t))f + (∇un(t),∇Dgn(t))f + ((un(t) · ∇)un(t), Dgn(t))f

−
1

2
〈un · νun, gn〉∂Ωs

+ (g(vn(t)), wn(t))s + (vt,n(t), wn(t))s + |Ξn(t)|
2
s = 0. (25)

The task left is to prove that the first six terms go to zero as n → ∞. This
follows from Lemma 3.2, (24), (23) and Lemma 3.1, which implies uniform in
time convergence

(unt(t), Dgn(t))f → 0, (vtn(t), wn(t))s → 0.

Growth condition imposed on g(s) along with Sobolev’s embedings imply
|g(vn(t))|s ≤ M , hence on the strength of (23) (g(vn(t)), wn(t))s → 0. Feeding
this information into (25) yields

|Ξn(t)|
2
s → 0

as desired to complete the proof of Lemma 3.5.

3.5. Strong ω-limit set is {0} for any initial data in H0

The final step in the proof is to show strong stability for arbitrary initial data
in H0. Theorem 2.1 defines semigroup S0(t) : H0 → H0, so that for any
data x ∈ H0, S0(t)x is weak solution of (14). Lemma 3.5 asserts that this
semigroup, when restricted to a dense set D ⊂ H0, is strongly stable. Thus,
the proof of strong stability on H0 entails proving that the nonlinear semigroup
S0(t) describing the flow is locally Lipschitz on H0. This last property depends
critically on two-dimensionality of the domain. The required argument calls for
appropriate estimates applied to the difference of two solutions. In the case of
two dimensional domains Sobolev’s embeddings provide the following needed
estimate valid for any elements Xn, X0 ∈ D

|S(t)Xn − S(t)X0|H0
≤ C(|X0|H0

)|Xn −X0|H0
.

The uniform boundedness of the semigroup and above local Lipschitz estimate
allows to extend by density strong stability from D onto H0.
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4. Uniform stability under the frictional damping - Proof

of Theorem 2.4

The proof of Theorem 2.4 is based on the multiplier’s method with projecting
operators. As usual, the critical step in proving Theorem 2.4 is the following
estimate:

Theorem 4.1. Under the conditions of Theorem 2.4, there exist a time T > 0
and a constant CT > 0, such that the energy at t = T is dominated by the
dissipation for all initial condition (u0, w0, w1) ∈ H :

E(T ) ≤ HT

(∫ T

0

D(t)dt

)
(26)

where HT (s) : R
+ → R+ is a concave, monotone increasing function and zero at

the origin. Once Theorem 4.1 is established, using the energy identity (7) and
following the nonlinear version of an inductive argument in Lasiecka & Tataru
(1993), one is able to demonstrate Theorem 2.4. Indeed, using the fact that the
system is autonomous we reiterate the same estimate on the multiple T , which
gives

E((m+ 1)T ) ≤ HT

(∫ (m+1)T

mT

D(t)dt

)
,m = 0, 1 . . .

By the energy identity (8)

E((m+ 1)T ) ≤ HT (E(m(T ))− E((m+ 1)T )

H−1
T (E((m+ 1)T )) ≤ E(mT )− E(m+ 1)T

H−1
T (E((m+ 1)T )) + E((m+ 1)T ) ≤ E(mT ).

The rest of the argument rests on ODE comparison theorem Lasiecka & Tataru
(1993). Thus, the main task is to establish the validity of Theorem 4.1.

5. Proof of Theorem 4.1.

In this step, we will show the uniform stability result for the model without
static damping. While in the case of strong stability the main mechanism for
dissipation of the energy is viscosity of the fluid, for the uniform stability we
also exploit frictional damping imposed on the solid. Our goal is to establish
the inequality

E(T ) ≤ HT

(∫ T

0

D(t)dt

)
(27)
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where H(s) is a concave, continuous function, monotone and zero at the origin.
The existence of such function will allow to calculate the decay rates as in
Lasiecka & Tataru (1993).

We note that the energy identity gives

∫ T

0

D(t)dt =

∫ T

0

|∇u|2fdt+

∫ T

0

(g(v), v)sdt = E(0)− E(T ). (28)

This form controls kinetic energy of the wave. Indeed
∫ T

0

|v|2sdt =

∫

Qs∩|v|≥1

|v|2sdt+

∫

Qs∩|v|≤1

|v|2sdt ≤
1

m

∫

Qs

(g(v), v)sdt+

∫

Qs

h(g(v)v)dt.

Hence, by Jensen’s inequality and the monotonicity of h

∫ T

0

|∇u|2fdt+

∫ T

0

|v|2sdt ≤ [ĥ+m−1I]

(∫ T

0

(g(v), v)sdt

)
+E(0)−E(T ) (29)

where ĥ = 1
measQs

h(measQs·) on the strength of Jensen’s inequality.
The next step is the control of potential energy. The key point of the proof

is that rather than using w as the multiplier in equipartition of energy, inspired
by Haraux (2006) we will use a different multiplier that is linked to projection
on unstable manifold.

In order to achieve equipartition of the energy, we shall use projector opera-
tor which allows to separate steady states from the solution, the idea employed
for the damped wave equation in Haraux (2006). Let {φi} be the orthonor-
mal basis of L2(Ωs), formed by the eigenfunctions of the eigenvalue problem

−△φ = λφ with Neumann boundary condition
∂φ

∂ν
= 0 satisfying the condition

that 0 ≤ λ1 ≤ ...λi ≤ ..., where λi is the corresponding eigenvalue of φi. Recall
that φ1 is constant, thus let P be the projection from L2(Ωs) to the subspace
expanded by φ1, then,

Pw =
1

|Ωs|

∫

Ωs

w(x)dx, ∀ w ∈ L2(Ωs). (30)

And a classical version of the Poincaré’s inequality states that there exists
a constant C > 0 depending only on Ω such that

|w − Pw|L2
+ |w − Pw|H1 ≤ C|∇w|L2

, ∀ w ∈ H1(Ωs).

Applying the multiplier w − Pw to the equation vt = div Ξ + g(v) along with

integration by parts and
∂w

∂ν
= 0, on ∂Ωs − Γs, yields:

(v, w − Pw)s|
T
0 −

∫ T

0

(v, wt − Pwt)sdt+

∫ T

0

(g(v), w − Pw)sdt
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=

∫ T

0

〈Ξ · n,w − Pw〉dt−

∫ T

0

(Ξ,∇(w − Pw))sdt.

Noting that since Pw is constant in space, ∇(w − Pw) = ∇w = Ξ, and
recalling that wt = v gives:

∫ T

0

[|Ξ|2L2(Ωs)
− |v|2L2(Ωs)

]dt = −(v, w − Pw)s|
T
0 −

∫ T

0

(v, Pv)sdt

+

∫ T

0

〈Ξ · ν, w − Pw〉dt+

∫ T

0

(g(v), w − Pw)sdt. (31)

Step 1: interior damping term:

∣∣∣∣(g(v), w − Pw)s

∣∣∣∣ ≤ I + II (32)

where

I =

∣∣∣∣
∫

Ωs,|v|≤1

g(v)(w − P (w))dΩs

∣∣∣∣ ≤ C

∫

Ωs

|v||w − Pw|dΩs ≤ Cǫ|v|
2
s + ǫ|Ξ|2s

II =

∣∣∣∣
∫

Ωs,|v|≥1

g(v)(w − P (w))dΩs

∣∣∣∣ ≤ |g(v)|Lr
|w − Pw|Lr

≤ |g(v)|Lr
|Ξ|s

≤ (E(0))
1

2

∣∣∣∣
∫

Ωs

g(v)(g(v))r−1dΩs

∣∣∣∣
r−1

≤ (E(0))
1

2

∣∣∣∣
∫

Ωs

g(v)(v)p(r−1)dΩs

∣∣∣∣
r−1

,

taking p(r − 1) = 1

≤ (E(0))
1

2

∣∣∣∣
∫

Ωs

(g(v))(v)dΩs

∣∣∣∣
r−1

≤ CE(0)

∣∣∣∣
∫

Ωs

g(v)(v)dΩs

∣∣∣∣,

In the last step, we used r = 1 +
1

p
≥ 1, which is true for any p > 0.

Step 2: the boundary term

∫ T

0

〈Ξ · ν, w − Pw〉dt:

we construct Stoke’s solver

∆Dg∗ = ∇q, in Ωf

div Dg∗ = 0, in Ωf

Dg∗|Γf
= 0

Dg∗ = g∗, on ∂Ωs
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for any g∗ such that

∫

Γs

g∗ · νdΓs = 0. We define the boundary term g∗ as

before. g∗ = w|Γs
− Pw on Γs and then extended smoothly (keeping H1/2(Γs)

norms) and onto ∂Ωs while retaining compatibility condition

∫

∂Ωs

g∗ ·νdΓs = 0.

Remark 12. When ∂Ωs = Γs and the initial data are in Hd, then g
∗ = w|Γs

−

Pw automatically satisfies the compatibility condition

∫

Γs

g∗ ·ν = 0. Thus, there

is no need for extension.

We apply flow inequality with the test function φ = Dg∗. The compatibility
condition is satisfied due to compatibility of the initial data and the space
H1(Ωs).

(ut, Dg
∗)f − 〈Ξ · ν, w|Γs

− Pw〉+ (∇u,∇Dg∗)f +

((u · ∇)u,Dg∗)f − 〈
1

2
(u · ν)u,Dg∗〉∂Ωs

= 0. (33)

Integration by parts in time and taking advantage of the matching on the in-
terface yields:

−

∫ T

0

[(u,D(g∗t ))f − 〈Ξ · ν, w − Pw〉+ (∇u,∇Dg∗)f ]dt+

∫ T

0

[((u · ∇)u,Dg∗)f − 〈
1

2
(u · ν)u, g∗〉∂Ωs

]dt = (u,Dg∗)f |
T
0 . (34)

From here the estimate for the boundary term becomes:

∫ T

0

〈Ξ · ν, w − Pw〉dt ≤

∫ T

0

(u,Dg∗t )f + (∇u,∇Dg∗)f ]dt+

∫ T

0

[((u · ∇)u,Dg∗)f − 〈
1

2
(u · ν)u,w − Pw〉]dt + (u,Dg∗)f |

T
0 . (35)

Step 3: nonlinear terms.

Introducing the bilinear form

b(u, v, w) ≡ ((u · ∇)v, w)f −
1

2
〈(u · ν)v, w〉

we obtain by virtue of Sobolev’s embedding

|b(u, v, w)| ≤ C[|u|1/2,f |v|1,f |w|1/2,Ωf
+ |u|1/2,f |v|3/4,f |w|3/4,f ]. (36)

This gives

|b(u, u,Dg∗)| ≤ C|u|1/2,f |u|1,f |Dg
∗|1/2,f + C|u|1/2,f |u|3/4,f |Dg

∗|3/4,f
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where we recall g∗ = w − Pw, on Γs. Elliptic theory, Temam (1977), and
interpolation thus imply

|Dg∗|1/2,f ≤ |g∗|0,Γs
≤ C|w − Pw|1/2s |w − Pw|

1/2
1,s .

Similarly

|Dg∗|3/4,f ≤ |g∗|1/4,Γs
≤ C|w − Pw|1/4s |w − Pw|

3/4
1,s .

Combining the above

∫ T

0

|b(u, u,Dg∗)|dt ≤ ǫ

∫ T

0

|Ξ|2sdt+ Cǫ,E(0)

∫ T

0

|∇u|2fdt. (37)

Step 4: time derivatives.

We have

g∗t = v|Γs
− Pv = u|Γs

− Pv, on Γs.

Hence, |g∗t |1/2,Γs
≤ C[|∇u|f + |v|s] and

|(u,Dg∗t )f | ≤ C[|∇u|2f + |v|2s]. (38)

Substituting inequalities (37), (38) into (35) gives the final bound for the bound-
ary interface coupling term:

∫ T

0

〈Ξ · ν, w − Pw〉dt

≤ C

∫ T

0

|v|2sdt+ C

∫ T

0

[|u|f (|v|s + |u|Γ) + |u|1,f |Ξ|+ |u|21,f |Ξ|s]dt+ E(0) +E(T )

≤ C

∫ T

0

|v|2sdt+ C(E(0))[Cǫ

∫ T

0

|u|21,f + ǫ|Ξ|2s]dt+ CE(0) + CE(T ). (39)

Combining with (31) and taking suitably small ǫ yields

∫ T

0

|Ξ|2L2(Ωs)dt ≤ C

∫ T

0

|v|2L2(Ωs)dt+ C(E(0))

∫ T

0

|u|21,fdt+ CE(0) + CE(T ). (40)

(29) and (31) and energy identity and Jensen’s inequality imply

∫ T

0

[|Ξ|2L2(Ωs) + |v|2s + |u|21,f ]dt ≤ C(E(0))

∫ T

0

D(t)dt+ h

(
∫ T

0

D(t)dt

)

+ CE(T ). (41)

Hence,
∫ T

0

E(t)dt ≤ CE(0)[1 + ĥ]

(∫ T

0

D(t)dt

)
+ CE(T )
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1

2
E(T )T +

1

2

∫ T

0

E(t)dt ≤ CE(0)[1 +m−1 + ĥ]

(∫ T

0

D(t)dt

)
+ CE(T )

and taking T > 2C yields

E(T ) ≤ C(E(0))H

(∫ T

0

D(t)dt

)
(41)

where H(s) = s+m−1s+ ĥ(s) ∼ ĥ(s) for small s. This determines the asymp-
totic behavior of the ODE.
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