PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Deep learning of the role of interleukin IL-17 and its action in promoting cancer

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In breast cancer patients, metastasis remains a major cause of death. The metastasis formation process is given by an interaction between the cancer cells and the microenvironment that surrounds them. In this article, we develop a mathematical model that analyzes the role of interleukin IL-17 and its action in promoting cancer and in facilitating tissue metastasis in breast cancer, using a dynamic analysis based on a stochastic process that accounts for the local and global action of this molecule. The model uses the Ornstein-Uhlembeck and Markov process in continuous time. It focuses on the oncological expansion and the interaction between the interleukin IL-17 and cell populations This analysis tends to clarify the processes underlying the metastasis expansion mechanism both for a better understanding of the pathological event and for a possible better control of therapeutic strategies. IL-17 is a proinflammatory interleukin that acts when there is tissue damage or when there is a pathological situation caused by an external pathogen or by a pathological condition such as cancer. This research is focused on the role of interleukin IL-17 which, especially in the case of breast cancer, turns out to be a dominant “communication pin” since it interconnects with the activity of different cell populations affected by the oncological phenomenon. Stochastic modeling strategies, specially the Ornstein-Uhlenbeck process, with the aid of numerical algorithms are elaborated in this review. The role of IL-17 is discussed in this manuscript at all the stages of cancer. It is discussed that IL-17 also acts as “metastasis promoter” as a result of its proinflammatory nature. The stochastic nature of IL-17 is discussed based on the evidence provided by recent literature. The resulting dynamical analysis can help to select the most appropriate therapeutic strategy. Cancer cells, in the case of breast cancer, have high level of IL-17 receptors (IL-17R); therefore the interleukin itself has direct effects on these cells. Immunotherapy research, focused on this cytokine and interlinked with the stochastic modeling, seems to be a promising avenue.
Rocznik
Strony
art. no. 20200052
Opis fizyczny
Bibliogr. 47 poz., rys.
Twórcy
  • Center for Study in Motor Science, - Biomechanics dept., Lucca, Italy
  • Department of Mathematics, Comsats Institute of Information Technology, Lahore 54000, Pakistan
Bibliografia
  • 1. Tulotta C, Ottewell P. The role of IL-1B in breast cancer bone metastasis. Endocr Relat Canc 2018;25:R421-34.
  • 2. Balkwill F. TNF-α in promotion and progression of cancer. Canc Metastasis Rev 2006;25:409.
  • 3. Chang SH. T helper 17 (Th17) cells and interleukin-17 (IL-17) in cancer. Arch Pharm Res 2019;42:1-11.
  • 4. McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease. Immunity 2019;50:892-906.
  • 5. Karabulut M, Afsar CU, Serimez M, Karabulut S. Serum IL-17 levels can be diagnostic for gastric cancer. J BU ON: Official J Balkan Union Oncol 2019;24:1601-9.
  • 6. Kim G, Khanal P, Lim SC, Yun HJ, Ahn SG, Ki SH, et al. Interleukin-17 induces AP-1 activity and cellular transformation via upregulation of tumor progression locus 2 activity. Carcinogenesis 2013;34: 341-50.
  • 7. Nam JS, Terabe M, Kang MJ, Chae H, Voong N, Yang Y, et al. Transforming growth factor β subverts the immune system into directly promoting tumor growth through interleukin-17. Canc Res 2008;68:3915-23.
  • 8. Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau CS, et al. IL-17-producing γ δ T cells and neutrophils conspire to promote breast cancer metastasis. Nature 2015;522:345-8.
  • 9. Welte T, Zhang XHF. Interleukin-17 could promote breast cancer progression at several stages of the disease. Mediat Inflamm 2015;2015. https://doi.org/10.1155/2015/804347.
  • 10. Kwon YJ, Hurst DR, Steg AD, Yuan K, Vaidya KS, Welch DR, et al. Gli1 enhances migration and invasion via up-regulation of MMP-11 and promotes metastasis in ERα negative breast cancer cell lines. Clin Exp Metastasis 2011;28:437.
  • 11. Zhang X, Huang S, Guo J, Zhou L, You L, Zhang T, et al. Insights into the distinct roles of MMP-11 in tumor biology and future therapeutics. Int J Oncol 2016;48:1783-93.
  • 12. Roy LD, Sahraei M, Schettini JL, Gruber HE, Besmer DM, Mukherjee P. Systemic neutralization of IL-17A significantly reduces breast cancer associated metastasis in arthritic mice by reducing CXCL12/SDF-1 expression in the metastatic niches. BMC Cancer 2014;14:225.
  • 13. Das RL, Pathangey LB, Tinder TL, Schettini JL, Gruber HE, Mukherjee P. Breast-cancer-associated metastasis is significantly increased in a model of autoimmune arthritis. Breast Cancer Res 2009;11:R56.
  • 14. Fabre J, Giustiniani J, Garbar C, Antonicelli F, Merrouche Y, Bensussan A, et al. Targeting the tumor microenvironment: the protumor effects of IL-17 related to cancer type. Int J Mol Sci 2016; 17:1433.
  • 15. Numasaki M, Watanabe M, Suzuki T, Takahashi H, Nakamura A, McAllister F, et al. IL-17 enhances the net angiogenic activity and in vivo growth of human non-small cell lung cancer in SCID mice through promoting CXCR-2-dependent angiogenesis. J Immunol 2005;175:6177-89.
  • 16. Sharma B, Nawandar DM, Nannuru KC, Varney ML, Singh RK. Targeting CXCR2 enhances chemotherapeutic response, inhibits mammary tumor growth, angiogenesis, and lung metastasis. Mol Canc Therapeut 2013;12:799-808.
  • 17. Jamieson T, Clarke M, Steele CW, Samuel MS, Neumann J, Jung A, et al. Inhibition of CXCR2 profoundly suppresses inflammationdriven and spontaneous tumorigenesis. J Clin Invest 2012;122: 3127-44.
  • 18. Wu L, Awaji M, Saxena S, Varney ML, Sharma B, Singh RK. Il-17- cxc chemokine receptor 2 axis facilitates breast cancer progression by up-regulating neutrophil recruitment. Am J Pathol 2020;190:222-33.
  • 19. Li B, Severson E, Pignon JC, Zhao H, Li T, Novak J, et al. Comprehensive analyses of tumor immunity: implications for cancer immunotherapy. Genome Biol 2016;17:1-16.
  • 20. Lythe G, Molina-París C. Some deterministic and stochastic mathematical models of naïve T-cell homeostasis. Immunol Rev 2018;285:206-17.
  • 21. Mayer H, Bovier A. Stochastic modelling of T-cell activation. J Math Biol 2015;70:99-132.
  • 22. López-García M, Castro M, Abourashchi N, Lythe G, Molina-París C, et al. Fate of a Naive T cell: a stochastic journey. Front Immunol 2019;10:194.
  • 23. Omidian Z, Ahmed R, Giwa A, Donner T, Hamad ARA. IL-17 and limits of success. Cell Immunol 2019;339:33-40.
  • 24. Singh I, Nath N, Saxena N, Singh AK, Won JS. Regulation of IL-10 and IL-17 mediated experimental autoimmune encephalomyelitis by S-nitrosoglutathione. Immunobiology 2018;223:549-54.
  • 25. Zou W, Restifo NP. TH 17 cells in tumour immunity and immunotherapy. Nat Rev Immunol 2010;10:248-56.
  • 26. Yan C, Richmond A. Th9 and Th17 cells: the controversial twins in cancer immunity. J Clin Invest 2020;130:3409-11.
  • 27. Nowell PC. The clonal evolution of tumor cell populations. Science 1976;194:23-8.
  • 28. Ghosh S, Banerjee S. Mathematical modeling of cancer-immune system, considering the role of antibodies. Theor Biosci 2018; 137:67-78.
  • 29. Eftimie R, Bramson JL, Earn DJ. Interactions between the immune system and cancer: a brief review of non-spatial mathematical models. Bull Math Biol 2011;73:2-32.
  • 30. Speer JF, Petrosky VE, Retsky MW, Wardwell RH. A stochastic numerical model of breast cancer growth that simulates clinical data. Canc Res 1984;44:4124-30.
  • 31. Bozic I, Antal T, Ohtsuki H, Carter H, Kim D, Chen S, et al. Accumulation of driver and passenger mutations during tumor progression. Proc Natl Acad Sci USA 2010;107:18545-50.
  • 32. Antal T, Krapivsky P. Exact solution of a two-type branching process: models of tumor progression. J Stat Mech Theor Exp 2011;2011:p08018.
  • 33. Zhong WR, Shao YZ, He ZH. Pure multiplicative stochastic resonance of a theoretical anti-tumor model with seasonal modulability. Phys Rev 2006;73:060902.
  • 34. Bressloff PC. Stochastic processes in cell biology. Springer; 2014, vol 41.
  • 35. Sommer A. Numerical methods for parameter estimation in dynamical systems with noise with applications in systems biology. Heidelberger: Dokumentenserver; 2017. https://doi.org/10.11588/heidok.00022589.
  • 36. Farrell K, Mahajan G, Srinivasan P, Lee MY, Kothapalli CR. Pediatric glioblastoma cells inhibit neurogenesis and promote astrogenesis, phenotypic transformation and migration of human neural progenitor cells within cocultures. Exp Cell Res 2018;362:159-71.
  • 37. Agliari E, Barra A, Guerra F, Moauro F. A thermodynamic perspective of immune performances. arXiv preprint arXiv:2011; 11053146.
  • 38. Li-Li J, Xiao-Qin L, Dan W, Shi-Qun Z. Stochastic properties of tumor growth with coupling between non-Gaussian and Gaussian noise terms. Chin Phys B 2012;21:090503.
  • 39. Timp W, Feinberg AP. Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host. Nat Rev Cancer 2013;13:497-510.
  • 40. Xiao H, Bartoszek K, Pietro L. Multi-omic analysis of signalling factors in inflammatory comorbidities. BMC Bioinf 2018;19: 439.
  • 41. van Rosmalen J, Toy M, O’Mahony JF. A mathematical approach for evaluating Markov models in continuous time without discrete-event simulation. Med Decis Making 2013;33: 767-79.
  • 42. Gillespie DT. Exact numerical simulation of the Ornstein-Uhlenbeck process and its integral. Phys Rev 1996;54:2084.
  • 43. Wils S, De Schutter E. STEPS: modeling and simulating complex reaction-diffusion systems with Python. Front Neuroinf 2009; 3:15.
  • 44. Strey HH. Estimation of parameters from time traces originating from an Ornstein-Uhlenbeck process. Phys Rev 2019;100: 062142.
  • 45. Blanc G, Gupta N, Valiant G, Valiant P. Implicit regularization for deep neural networks driven by an Ornstein-Uhlenbeck like process. In: Conference on learning theory; 2020:483-513 pp.
  • 46. Žmuk B, Kovač M. Ornstein-Uhlenbeck process and GARCH model for temperature forecasting in weather derivatives valuation. Croatian Rev Econ Bus Soc Stat 2020;6:27-42.
  • 47. Laitinen V, Lahti L. A hierarchical Ornstein-Uhlenbeck model for stochastic time series analysis. In: International symposium on intelligent data analysis. Springer; 2018:188-99 pp.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3471e75-e1d5-4a5a-b97c-74de828af563
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.