PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of regression models on the prediction of corrosion degradation of a crude oil distillation unit

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The crude distillation unit is the most critical elements in the refining process. Moreover, most of the equipment in the distillation unit are made of general carbon steels. Data analysis models, machine learning techniques can predict corrosion degradation rates. We used Pearson’s correlation coefficient and multiple linear regression, to predict the impact of process parameters. Altogether, we have analysed 84 channels of technological parameters, and 22 different types of crude oils. Among the corrosion agents, the chloride content strongly affected the weight loss of coupons, where the highest coefficient was 0.68. The most influential parameter is found to be the pH value. Thus, an estimation method of the pH value is set up to predict the corrosion degradation rate. The regression correlation for estimating the pH value is 0.53 if the corrosion agents are not used, which can be improved to 0.76 if the corrosion agents are also used in the regression analysis.
Rocznik
Strony
72--85
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
  • Department of Materials Science & Engineering, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
  • Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
  • MOL Plc., Hungary, Hungary
autor
  • MOL Plc., Hungary, Hungary
  • RozsdaLovag Ltd., Hungary
  • RozsdaLovag Ltd., Hungary
  • Green Italy Srl., Cagliari, Italy
autor
  • Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
Bibliografia
  • 1. Łabanowski J., Jurkowski M., and Landowski M.: The Effect of Long Term Service at Elevated Temperatures on Microstructure Degradation of Austenitic Reformer Tubes. Advances in Materials Science 18 (2018), 27–36.
  • 2. Łabanowski J., Jurkowski M., and Landowski M.: Effect of Long Term Service at Elevated Temperatures on Mechanical Properties of Manaurite XM Reformer Tubes. Advances in Materials Science 16 (2016), 38–44.
  • 3. Zieliński A., Golański G., Sroka M., and Dobrzański J.: Estimation of long-term creep strength in austenitic power plant steels, Materials Science and Technology 32 (2016), 780-785.
  • 4. Sroka M., Zieliński A., Golański G, Pawlyta M., Purzyńska H., and Novy F.: Evolution of the microstructure and mechanical properties of Sanicro 25 austenitic stainless steel after long-term ageing. Archives of Civil and Mechanical Engineering 23 (2023), 149.
  • 5. Łabanowski J., Rzychoń T., Simka W., and Michalska J.: Sulfate‐reducing bacteria‐assisted hydrogen‐induced stress cracking of 2205 duplex stainless steels. Materials and Corrosion 70 (2019), 1667–1681.
  • 6. Ławrynowicz Z.: Effect of The Degree of Cold Work and Sensitization Time on Intergranular Corrosion Behavior in Austenitic Stainless Steel. Advances in Materials Science 19 (2019), 32–43.
  • 7. Yamanoglu R., Fazakas E., Ahnia F., Alontseva D., and Khoshnaw F.: Pitting Corrosion behaviour of Austenitic Stainless-Steel Coated on Ti6Al4V Alloy in Chloride Solutions. Advances in Materials Science 21 (2021), 5–15.
  • 8. Rebak R. B.: Sulfidic corrosion in refineries – a review. Corrosion Reviews 29 (2011), 3–4.
  • 9. Fajobi M. A., Loto R. T., and Oluwole O. O.: Corrosion in Crude Distillation Overhead System: A Review. Journal of Bio- and Tribo-Corrosion 5 (2019), 67.
  • 10. Chis T., Sterpu A. E., and Săpunaru O. V.: The Effect of Corrosion on Crude Oil Distillation Plants. ChemEngineering 6 (2022), 41.
  • 11. Kim J., Lim W., Lee Y., Kim S., Park S-R., Suh S-K., and Moon I.: Development of Corrosion Control Document Database System in Crude Distillation Unit. Industrial & Engineering Chemistry Research 50 (2011), 8272–8277.
  • 12. American Petroleum Institute: API 571 Damage Mechanisms Affecting Fixed Equipment in the Refining Industry 2003.
  • 13. Loto R. T.: Study of the corrosion behaviour of S32101 duplex and 410 martensitic stainless steel for application in oil refinery distillation systems. Journal of Materials Research and Technology 6 (2017) 203–212.
  • 14. Ahmed A. A.: Corrosion in Crude Oil Distillation Unit Overhead: A recent Case Study. Aro-The Scientific Journal of Koya University 9 (2021), 21–27.
  • 15. Fadhil A. A., Ismael M. H., Farhan S. N., Khadom A. A., Liu H., and Fu C.: Corrosion of Crude Oil Distillation Column: Kinetics and Mathematical Views. Journal of Bio- and Tribo-Corrosion 5 (2019), 80.
  • 16. Yang M., Sun H., and Abubarkirov R.: Machine Learning in Process Safety and Asset Integrity Management. Machine Learning in Chemical Safety and Health (2022), 93–112.
  • 17. Soomro A. A., Mokhtar A. A., Kurnia J. C., Lashari N., Lu H., and Sambo C.: Integrity assessment of corroded oil and gas pipelines using machine learning: A systematic review. Engineering Failure Analysis 31 (2022), 105810.
  • 18. Ossai C. I.: A Data-Driven Machine Learning Approach for Corrosion Risk Assessment—A Comparative Study. Big Data and Cognitive Computing 3 (2019), 28.
  • 19. Yang J., Suo G., Chen L., Dou Z., and Hu Y.: Prediction method of key corrosion state parameters in refining process based on multi-source data. Energy 263 (2023), 125594.
  • 20. Alqarni A. A., Yadav O. P., and Rathore A. P. S.: Application of Isotonic Regression in Predicting Corrosion Depth of the Oil Refinery Pipelines. 2022 Annual Reliability and Maintainability Symposium (RAMS) (2022), 1–6.
  • 21. Suo G., Lei J., Chen L., Yang J., and Dou Z.: Corrosion Prediction Model of Circulating Water in Refinery Unit Based on PCA-PSO-BP. 2021 IEEE Asia Conference on Information Engineering (ACIE) (2021), 60–64.
  • 22. Mohammad Zubir W. M. A., Abdul Aziz I., and Jaafar J.: Evaluation of Machine Learning Algorithms in Predicting CO2 Internal Corrosion in Oil and Gas Pipelines. (2019), 236–254.
  • 23. Mohammed A., and Hewahi N.: Predicting Oil and Gas Pipe Wall Thickness Using Machine Learning. 2021 International Conference on Data Analytics for Business and Industry (ICDABI) (2021), 7–11.
  • 24. Yang J., Li R., Chen L., Hu Y., and Dou Z.: Research on equipment corrosion diagnosis method and prediction model driven by data. Process Safety and Environmental Protection 158 (2022), 418–431.
  • 25. Schempp P., Preuß K., and Tröger M.: About the Correlation Between Crude Oil Corrosiveness and Results From Corrosion Monitoring in an Oil Refinery. Corrosion 72 (2016), 843–855.
  • 26. Subramanian C.: Corrosion prevention of crude and vacuum distillation column overheads in a petroleum refinery: A field monitoring study. Process Safety Progress 40 (2021), 12213.
  • 27. Schempp P., Köhler S., Menzebach M., Preuss K., Tröger M.: Corrosion in the crude distillation unit overhead line: Contributors and solutions. EUROCORR 2017, Proceedings of the European Corrosion Congress September 3-7, 2017, Prague, Czech Republic. Paper No. 88826.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3445e6a-17e5-4061-bfe4-6e8117840bad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.