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 Abstract 
Since G.E.P. Box introduced central composite designs in early fifties of 20th century, the classic 
design of experiments (DoE) utilizes response surface models (RSM), however usually limited to the 
simple form of low-degree polynomials. In the case of small size datasets, the conformity with the 
normal distribution has very weak reliability and it leads to very uncertain assessment of  a parame-
ter statistical significance. The bootstrap approach appears to be better solution than – theoretically 
proved but only asymptotically equal – t distribution based evaluation. The authors presents the 
comparison of the RSM model evaluated by a classic method and bootstrap approach.  
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1. Introduction 

In the second half of the twentieth century, industry re-
mained under constant pressure to improve its products. In 
the last two decades, there has been an additional demand 
from consumers that these products are new or have com-
pletely new functional characteristics. Ignoring these de-
mands leads inevitably to marginalization of the company or 
pushing it out of the market. On the other hand, conducting 
research and development is very expensive and involves 
a high risk of failure. Any tools that increase the effective-
ness of these works and reduce the level of risk are highly 
desirable.  

One of the toolset, supporting engineers and researchers, is 
a design and analysis of experiments (DoE) methodology 
(Kempthorne and Hinkelmann, 2007; Montgomery, 2008), 
whose first ideas come from Fisher (Fisher, 1925). It con-
tains many different approaches, optimized to investigate 
specific objects and processes. They focus mainly on statisti-
cal aspects, but also on organizational ones. 

The basic feature of the tested object, which differentiates 
available analytical methods, is the method of setting the 
value of controlled factors. Setting values can be discrete, 
stepwise (e.g. type of material, dosage with tablets, supplier, 
type of part) or continuous (e.g. temperature setting, weight 
dosing, timing of reaction time). The first group of problems 
are located in the factorial approach, while the second – in 

the response surface approach (the well-known acronym: 
RSM – response surface methodology). The basics of RSM 
was developed by Box in 1951 (Box and Wilson, 1951), 
while two duets: Robbins with Monroe (Robbins and Mon-
roe, 1951) and Kiefer with Wolfowitz (Kiefer and Wol-
fowitz, 1952) created a supporting mathematical formalism. 

The general concept of this approach bases on the best 
identification of the assumed mathematical model while 
a number of experimental tests is predetermined. This obvi-
ously leads to the question: where should the test points be 
located in the space of controlled factors to achieve the best 
possible identification of the selected model. These test loca-
tion schemes are developed by statisticians and known as 
experimental designs (Montgomery, 2008). From the math-
ematical point of view, such a problem is almost identically 
as in the approximation nodes selection e.g. Tschebyshev, 
Gauss etc. The most popular method of the model identifica-
tion is least squares method (Gentle and Hardle, 2012), 
which assume a normal distribution of the random term with 
a mean equal to zero and an unknown variance. This assump-
tion is very strong and should a posteriori verified. It is usu-
ally done by a test of the normality e.g. Kolmogorov-
Smirnov (Kolmogorov, 1933; Smirnov, 1948), Anderson-
Darling (Anderson and Darling, 1952) or Shapiro-Wilk 
(Shapiro and Wilk, 1965). If the selected test does not reject, 
it is good and the predicted response uncertainty may be 
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estimated by typical asymptotic t distribution. But what to 
do, if it fails? The possible solution is a non-parametric ap-
proach which bases on the resampling scheme introduced by 
Efron (Efron, 1979). 

2. A bootstrap concept – short description 

The first idea of the bootstrap was introduced by Efron 
(Efron, 1979) derived from the jackknife procedure devel-
oped by Quenouille (Quenouille, 1949) and expanded by 
Tukey (Tukey, 1958). The approach treats drawings taken 
from the raw dataset as a source of true measurements. 
Resampled datasets are analyzed and functions of interest are 
evaluated giving the bootstrapped distributions, treated as 
derived from truly replicated measurements. In a particular 
case, the model identification procedure may be the evaluat-
ed function. 

Such approach is iterated many times, typically from thou-
sands to millions, and results are collected. Then, the ob-
tained dataset is analyzed and distributions of selected statis-
tics are numerically identified, especially their means and 
quasi-empirical confidence intervals. 

3. Statistical significance in bootstrapped RSM 
model 

Pietraszek and Wojnar (Pietraszek and Wojnar, 2016) 
showed how to assessed numerically statistical significance 
of RSM model parameters without any attempt to typical 
t distribution based methods.  

The classic sequence (raw dataset, statistic evaluation, sta-
tistical test, p-value, comparison to alpha) was replaced with 
(raw dataset, bootstrap, bootstrapped datasets, set of statis-
tics, histogram, alpha/2-tails, check for zero in bounds). It 
means that bootstrap was a procedure to obtain quasi-
empirical confidence interval based truncated on alpha/2 
tails. Then, the intervals was checked whether contains zero 
value inside. If yes – the statistic is insignificant; if not – the 
statistic is significant. The position of zero relative to the 
center of the interval gives the well-known p value. 

Pietraszek and Wojnar (Pietraszek and Wojnar, 2016) ana-
lyzed the dataset obtained from the investigation of the ver-
tebrae strength, however it may easily generalized into any 
analogous technological problem. The outcome (a strength of 
vertebrae) was dependent on three observed factors, specific 
properties of the vertebrae structure: a density of trabecular 
bone, a number of branches in a trabecular bone and a num-
ber of junctions on the branches in trabecular bone. The 
source dataset was small and it had only 23 records. It was 
enough to identify a linear prediction model, but it was inad-
equate to achieve a strong estimation of a uncertainty. They 
used a specific bootstrap variant described by Shao and Tu 
(Shao and Tu, 1995): 

a) the original dataset is used to identify a predictive 
model, 

b) the model is evaluated on the original data set and re-
sidual values are obtained, 

c) the residuals dataset is resampled and drawn values 
are added to model predictions – they create a new da-
taset of outcome, 

d) the new outcome dataset combined with original fac-
tors is used to identify a bootstrapped model – ob-
tained bootstrapped parameters are collected. 

The steps (c) and (d) are iterated thousands and thousands 
times, and huge dataset of collected parameters is built. Pie-
traszek and Wojnar (Pietraszek and Wojnar, 2016) used the 
approach mentioned above and obtained a complete distribu-
tions of the model parameters. Then, their 95% confidence 
intervals were evaluated. Their basic RSM model was con-
structed as: 

/c const BV TV branches

Junctions

R b b BVTV b Branches

b Junctions

     

 
  (1) 

where: 
Rc – observed strength of a vertebrae 
bconst – constant term, 
bBV/TV – coefficient of relative density of a trabecular bone, 
bbranches – coefficient of a average number of branches in 
trabecular bone, 
bjunctions – coefficient of a average number of junctions on 
the branches in trabecular bone. 

The replication of this model based on the data included in 
the article (Pietraszek and Wojnar, 2016) led to the dataset of 
bootstrapped parameters of the Eq.1. The data were tested for 
normality and revealed that data distributions are far from 
normality. The parameter bconst has mean 0.2823 while the 
classically evaluated is 0.34. Its shape is explicitly non-
normal (Fig. 1). 

 

 

Fig. 1. Histogram of bootstrapped bconst parameter 

The test of normality shows (Fig. 2) that p-value is less 
than 0.01 i.e. the normality of the parameter is rejected. 

3210-1-2-3

600

500

400

300

200

100

0

Mean 0,2823
StDev 0,8216
N 10000

b_const

Fr
eq
ue
nc
y



PRZEMYSŁAW	OSOCHA	ET	AL.	/	PRODUCTION	ENGINEERING	ARCHIVES	20	(2018)	49‐53 
 

	 51                                                                           ARCHIWUM	INŻYNIERII	PRODUKCJI 

 

 

Fig. 2. The probability plot of bootstrapped bconst parameter 

 

Fig. 3. Histogram of bootstrapped bBV/TV parameter 

 

Fig. 4. The probability plot of bootstrapped bBV/TV parameter 

 

Fig. 5. Histogram of bootstrapped bBranches parameter 

 

Fig. 6. The probability plot of bootstrapped bBranches parameter 

The parameter bBV/TV has mean 91.90 while the classically 
evaluated is 92.61. Its shape is not so explicitly not-normal 
(Fig. 3) as the previous one, but the test of normality was 
rejected also (Fig. 4). 

The parameter bBranches has mean 7.62 while the classically 
evaluated is 7.26. Its shape is explicitly not-normal (Fig. 5) 
and the test of normality was rejected also (Fig. 6). 

Finally, the parameter bJunctions has mean -13.74 while the 
classically evaluated is -13.16. Its shape is explicitly not-
normal (Fig. 7) and the test of normality was rejected (Fig. 
8). 

One can observe that all distributions are not-normal, their 
means are different than those evaluated classically and, 
additionally, three distributions (Fig. 1, Fig.5 and Fig. 7) 
have a distinct skewness. It shows that a classic model, based 
on assumptions that are not met, leads to not very accurate 
results. The non-parametric approach using the bootstrap 
method allows to create the whole-distribution-based statis-
tics, not only t distribution based asymptotic one, loosely 
related to the real data. 
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Fig 7. Histogram of bootstrapped bBranches parameter 
 

 

Fig. 8. The probability plot of bootstrapped bJunctions parameter 

 

Fig 9. The deviation of a bootstrapped parameter  
from a perfect value (source: Osocha et. al., 2015) 

An interesting question is what should be the number of 
iterations in the bootstrap method. Such problem was ad-
dressed (Osocha et al., 2015) and the stabilization of results 
appeared only above 4000…5000 iterations. 

4. Conclusions 

The comparison of the classically evaluated RSM model 
and the bootstrap based approach was presented. The differ-
ence between results obtained from LSQ with normality 
assumption and – in contrast – the bootstrap based non-
parametric approach was showed. 

Bootstrap approach appears to be effective computational 
method to identify parameters of RSM effects model and 
their statistical properties and – additionally – it does not 
require to make a priori inconvenient assumptions.  

The bootstrap approach appears to be an effective and 
easy-to-use procedure. However, it should be emphasized 
that this approach requires careful and continuous watching 
at residual plot to detect breakdown iterations which stabiliz-
es bootstrap means. 
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自动驾驶汽车的不规则操作 

 

關鍵詞 

事故重建，自动驾驶汽

车， 

自驾车 

紧急 

车辆运动模拟 

 摘要 

今天，随着车辆自主功能的普及，强调了引发事故的责任。自导功能在某些交通情况下起作

用，但事故发生，因此，下面的文章提出了对该问题的分析。其目的是表明具有自动驾驶功能

的车辆不能提供车辆制造商建议的驾驶员安全水平。在这篇文章中，最近的四个事件和一个分

析是否可以避免这些事故是一个人类驱动因素，或者它们是如何发生的，具有适当的自我驱动

功能。在每个调查的案例中，涉及具有自驱动功能的车辆。在对事故的评估和评估的基础上，

得出结论，当前的自行式车辆是否提供了驾驶员和社会对这些车辆的期望。 

在车辆模拟程序的帮助下说明事故过程的重建，特别强调所得到的参数，特别是避免事故。 

 

 

 


