PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modeling of a nuclear combined heat and power station supplying heat to remote municipal customers - the case of Poland

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Nuclear power is advocated as a cheap, clean and reliable source of electric power for both industry and the household sector. This paper focuses on technical issues relating to commissioning a cogeneration unit for use in combination with a typical Pressurized Water Reactor (PWR). Three heat extraction possibilities were analyzed and modeled in order to identify the most favorable option based on various criteria. The investigated possibilities of heat extraction were turbine bypass, steam bleeding and partial removal of heat from the network of regenerating heat exchangers. The working conditions of a municipal heat network, such as pressure drop and heat losses, were calculated and adapted to the conurbation centered on Gdansk (Poland). Annual demand was analyzed in light of the current state of development of the heating network. The operating parameters of the power plant were based on the Asco Nuclear Power Station in Spain. It was observed that certain heat extraction methods could deliver a significant increase in the weighted utilization factor.
Rocznik
Strony
255--266
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
  • Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
autor
  • Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Bibliografia
  • [1] C. Dahlgren, The Flooding Incident at the Agesta Pressurized Heavy Water Nuclear Power Plant, SKI Report 96:51.
  • [2] O. Samoilov, A. Kurachenkov, Nuclear district heating plants AST-500. Present status and prospects for future in Russia, Nuclear Engineering and Design 173 (1997) 109–117.
  • [3] W. Horak, Cogeneration in the former Soviet Union, Intersociety energy conversion engineering conference, Honolulu, HI (United States), 27 Jul - 2 Aug 1997.
  • [4] Y. Kuznetsov, A. Romenkov, A. Alekseev, F. Lisitsa, Y. Tokarev, O. Yarmolenko, NPP with VK-300 boiling water reactor for power and district heating grids, Small and medium sized reactors: Status and prospects. Proceedings (2002) 283–291.
  • [5] M. Imamura, K. Sato, T. Narabayashi, Y. Shimazu, M. Tsuji, A study of a small nuclear power plant system for district heating, Proceedings of ICAPP ‘09.
  • [6] S. Paquette, H. Bonin, Neutronic design and analysis of a small nuclear reactor to supply district heating and electrical energy to canadian forces bases located in the arctic or the northern remote communities, Nuclear Technology 176/3 (2011) 315–336.
  • [7] B. Csik, J. Kupitz, Nuclear power applications: Supplying heat for homes and industries, IAEA BULLETIN 39/2 (1997) 21–25.
  • [8] J. Marques, Evolution of nuclear fission reactors: Third generation and beyond, Energy Conversion and Management 51 (2010) 1774–1780.
  • [9] H. Safa, Heat recovery from nuclear power plants, International Journal of Electrical Power and Energy Systems 42/1 (2012) 553–559.
  • [10] N. Bergroth, Large-Scale Combined Heat and Power (CHP) Generation at Loviisa Nuclear Power Plant Unit 3, Proceedings and Book of Abstracts of 8th International Conference: Nuclear Option in Countries with Small and Medium Electricity Grids, Dubrovnik (Croatia), 16-20 May 2010 (2010) 36.
  • [11] C. Jones, Utilising Nuclear Energy for Low Carbon Heating Services in the UK, PhD thesis, University of Manchester.
  • [12] N. Le Pierrès, L. Luo, J. Berthiaud, N. Mazet, Heat transportation from the Bugey power plant, International Journal of Energy Research 33/2 (2009) 135–143.
  • [13] M. T., A. Reński, The Possibility to use a Nuclear Power Plant as a Source of Electrical Energy and Heat, Acta Energetica 3/20 (2014) 114–118.
  • [14] A. Wyrwa, A. Szurlej, L. Gawlik, W. Suwała, Energy scenarios for Poland - a comparison of PRIMES and TIMES-PL modeling results, Journal of Power Technologies 95 (2015) 100–106.
  • [15] J. Baurski, Nuclear Co-Generating Plants for Powering and Heating to Cleaning the Warsaw’s Environment, Proceedings and Book of Abstracts of 8th International Conference: Nuclear Option in Countries with Small and Medium Electricity Grids, Dubrovnik (Croatia), 16-20 May 2010 (2010) 26.
  • [16] M. Hanuszkiewicz-Drapała, J. Jędrzejewski, Thermodynamic analysis of a co-generation system with a high-temperature gas cooled nuclear reactor, Journal of Power Technologies 95 (2015) 32–41.
  • [17] D. Majumdar, Desalination and Other Non-electric Applications of Nuclear Energy, Workshop on Nuclear Reaction Data and Nuclear Reactors: Physics, Design and Safety.
  • [18] C. Forsberg, S. Rosenbloom, R. Black, Producing ethanol from corn using nuclear-generated steam, Nuclear News 3 (2007) 67–69.
  • [19] T. Konishi, Nuclear energy applications: Desalting water from the sea, IAEA Bulletin 39/2 (1997) 26–29.
  • [20] IAEA, New Technologies for Seawater Desalination Using Nuclear Energy, IAEA-TECDOC 1753.
  • [21] J. Kupitz, M. Podest, Nuclear heat applications: World overview, IAEA BULLETIN 26/4 (1983) 18–21.
  • [22] Q. Chen, Z. Tang, Y. Lei, Y. Sun, M. Jiang, Feasibility analysis of nuclear–coal hybrid energy systems from the perspective of low-carbon development, Applied Energy 158 (2015) 619-630. doi:http://dx.doi.org/10.1016/j.apenergy.2015.08.068. URL http://www.sciencedirect.com/science/article/pii/S0306261915010041
  • [23] M. T., A. Reński, Dynamic complexity study of nuclear reactor and process heat application integration, Proceedings of Global 2009 (2009) 9451.
  • [24] M. Ruth, O. Zinaman, M. Antkowiak, R. Boardman, R. Cherry, M. Bazilian, Nuclear-renewable hybrid energy systems: Opportunities, interconnections, and needs, Energy Conversion and Management 78 (2014) 684–694.
  • [25] M. Piera, Sustainability issues in the development of Nuclear Fission energy, Energy Conversion and Management 51 (2010) 938–946.
  • [26] S. Hong, C. Bradshaw, B. Brook, Global zero-carbon energy pathways using viable mixes of nuclear and renewables, Applied Energy 143 (2015) 451-459. doi:http://dx.doi.org/10.1016/j.apenergy.2015.01.006. URL http://www.sciencedirect.com/science/article/pii/S0306261915000124
  • [27] V. Nian, S. Chou, B. Su, J. Bauly, Life cycle analysis on carbon emissions from power generation – the nuclear energy example, Applied Energy 118 (2014) 68-82.doi:http://dx.doi.org/10.1016/j.apenergy.2013.12.015. URL http://www.sciencedirect.com/science/article/pii/S0306261913010143
  • [28] P. E. . sp. z o.o., Pierwsza Polska Elektrownia Jądrowa - Karta Informacyjna Przedsięwzięcia.
  • [29] PWC, Rynek ciepła w Polsce.
  • [30] IAEA, Accident Analysis for Nuclear Power Plants with Graphite Moderated Boiling Water RBMK Reactors, Safety Report Series 43.
  • [31] B. Babiarz, B. Zięba, Analiza jednostkowych strat ciepła w systemie rur preizolowanych, Budownictwo i Inżynieria Środowiska 59 (4/12) (2012) 5–19.
  • [32] A. Jachura, M. Sekret, Urban energy efficiency heating system, Ciepłownictwo 7-8 (2013) 7–12.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e33a7a8a-8586-4840-94e1-87b88ce95e71
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.