Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The objective of the research outlined in the article was to evaluate the conventional parameter known as volumetric energy density (VED), which serves as the primary indicator determining the quality of products manufactured using the additive technique with the Selective Laser Sintering (SLS) method. An independent goal was to examine the impact of secondary phase precipitates (Ni4Ti3) on the temperature ranges of phase transformations in nickel-rich NiTi alloys. Design/methodology/approach The assessment of Volumetric Energy Density (VED), was conducted based on the measurement of sample density, analysis of phase transformation sequences determined by scanning differential calorimetry (DSC), and phase composition determined by X-ray diffraction (XRD). VED was calculated based on laser power, scanning speed, hatch spacing, and single-layer thickness in the study on the influence of secondary phase precipitates (Ni4Ti3), formed during the ageing of the samples at 500°C for 20 and 100 hours, on the sequence of phase transformations, as well as the initiation and completion temperatures of martensitic (Ms, Mf) and austenitic (As, Af) transformations, scanning differential calorimetry (DSC) and X-ray diffraction (XRD) were employed. Findings It has been demonstrated that the value of Volumetric Energy Density (VED) is not a decisive parameter for the quality of the result. The primary influences on the quality of samples after the SLS process were found to be the laser energy and hatching space values. By varying the ageing time at a temperature of 500°C for NiTi alloy samples with excess nickel content (51.7 at.%), it is possible to influence the temperature of thermoelastic martensitic transformation effectively. This allows for utilising its unique functional properties for various advanced applications. Research limitations/implications The absolute condition for determining the temperature and post-processing time, which dictates specific phase transformation temperatures in NiTi alloys produced by additive techniques (SLS), is the selection of process parameters. The parameters include laser power and hatch spacing, ensuring an appropriate scanning speed and layer thickness. The factors guarantee certain product properties characterised by specific density and direct austenite-to-martensite transformation occurring during the cooling of samples. Practical implications Influencing the Ni/Ti ratio and microstructure of NiTi alloy through appropriate post-processing allows for the utilisation of its functional features, such as the shape memory effect combined with superelasticity, for advanced applications. Originality/value Based on the conducted research, it has been demonstrated that the quality of the product after the SLS process primarily depends on laser power and hatch spacing. It has also been shown that, for precise tuning of phase transformation temperatures in additively manufactured NiTi alloys, the selection of post-processing parameters is essential and is influenced by the initial composition of the powder used.
Wydawca
Rocznik
Tom
Strony
118--130
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
autor
- Department of Biomedical Engineering, Faculty of Mechanical Engineering and Energy, Koszalin University of Technology, Śniadeckich 2 St., 75-453 Koszalin, Poland
autor
- Unit of Mechanical Engineering, Faculty of Mechanical Engineering, Koszalin University of Technology (KUT), ul. Śniadeckich 2, 75-453 Koszalin, Poland
autor
- Department of Biomedical Engineering, Faculty of Mechanical Engineering, Koszalin University of Technology (KUT), ul. Śniadeckich 2, 75-453 Koszalin, Poland
autor
- Department of Technical Physics and Nanotechnology, Faculty of Mechanical Engineering, Koszalin University of Technology (KUT), ul. Śniadeckich 2, 75-453 Koszalin, Poland
autor
- Unit of Mechanical Engineering, Faculty of Mechanical Engineering, Koszalin University of Technology (KUT), ul. Śniadeckich 2, 75-453 Koszalin, Poland
autor
- Department of Biomedical Engineering, Faculty of Mechanical Engineering and Energy, Koszalin University of Technology, Śniadeckich 2 St., 75-453 Koszalin, Poland
Bibliografia
- [1] L.A. Dobrzański, L.B. Dobrzański, A.D. Dobrzańska-Danikiewicz, J. Dobrzańska, Nitinol type Alloys general characteristics and applications in endodontics, Processes 10/1 (2022) 101. DOI: https://doi.org/10.3390/pr10010101
- [2] K.M. Horvay, C.T. Schade, Development of nitinol alloys for additive manufacturing, Proceedings of the Materials Science & Technology 2018 Technical Meeting & Exhibition “MS&T18”, Columbus, Ohio, 2018, 63-70. DOI: https://doi.org/10.7449/2018/MST_2018_63_70
- [3] S. Saedi, A.S. Turabi, M.T. Andani, N. S. Moghaddam, M. Elahinia, H.E. Karaca, Texture, ageing, and superelasticity of selective laser melting fabricated Ni-rich NiTi alloys, Materials Science and Engineering: A 686 (2017) 1-10. DOI: https://doi.org/10.1016/j.msea.2017.01.008
- [4] T. Bormann, M. de Wild, F. Beckmann, B. Müller, Assessing the morphology of selective laser melted NiTi-scaffolds for a three-dimensional quantification of the one-way shape memory effect, Proceedings of the SPIE 8689, Behavior and Mechanics of Multifunctional Materials and Composites (2013) 868914. DOI: https://doi.org/10.1117/12.2012245
- [5] T. Bormann, R. Schumacher, B. Müller, M. Mertmann, M. De Wild, Tailoring selective laser melting proces parameters for NiTi implants, Journal of Materials Engineering and Performance 21 (2012) 2519-2524. DOI: https://doi.org/10.1007/s11665-012-0318-9
- [6] M.H. Elahinia, Shape memory alloy actuators: design, fabrication, and experimental evaluation, John Wiley and Sons, Chichester, 2016. DOI: https://doi.org/10.1002/9781118426913
- [7] M. Speirs, X. Wang, S. Van Baelen, A. Ahadi, S. Dadbakhsh, J.P. Kruth, J. Van Humbeeck, On the transformation behavior of NiTi shape-memory alloy produced by SLM, Shape Memory and Superelasticity 2 (2016) 310-316. DOI: https://doi.org/10.1007/s40830-016-0083-y
- [8] S. Dadbakhsh, B. Vrancken, J.P. Kruth, J. Luyten, J. Van Humbeeck, Texture and anisotropy in selective laser melting of NiTi alloy, Materials Science and Engineering: A 650 (2016) 225-232. DOI: https://doi.org/10.1016/j.msea.2015.10.032
- [9] B. Song, X. Zhao, S. Li, C. Han, Q. Wei, S. Wen, J. Liu, Y. Shi, Differences in microstructure and properties between selective laser melting and traditional manufacturing for fabrication of metal parts: A review, Frontiers of Mechanical Engineering 10 (2015) 111-125. DOI: https://doi.org/10.1007/s11465-015-0341-2
- [10] T. Bormann, B. Müller, M. Schinhammer, A. Kessler, P. Thalmann, M. De Wild, Microstructure of selective laser melted nickel–titanium, Materials Characterization 94 (2014) 189-202. DOI: https://doi.org/10.1016/j.matchar.2014.05.017
- [11] E. Farber, J.N. Zhu, A. Popovich, V. Popovich, A review of NiTi shape memory alloy as a smart material produced by additive manufacturing, Materials Today: Proceedings 30/3 (2020) 761-767. DOI: https://doi.org/10.1016/j.matpr.2020.01.563
- [12] S. Dadbakhsh, M. Speirs, J. Van Humbeeck, J.P. Kruth, Laser additive manufacturing of bulk and porous shape-memory NiTi alloys: From processes to potential biomedical applications, MRS Bulletin 41/10 (2016) 765-774. DOI: https://doi.org/10.1557/mrs.2016.209
- [13] M. Bram, A. Ahmad-Khanlou, A. Heckmann, B. Fuchs, H.P. Buchkremer, D. Stöver, Powder metallurgical fabrication processes for NiTi shape memory alloy parts, Materials Science and Engineering: A 337/1-2 (2002) 254-263. DOI: https://doi.org/10.1016/S0921-5093(02)00028-X
- [14] C.M. Jackson, H.J. Wagner, R.J. Wasilewski, 55-nitinol-the alloy with a memory: it's physical metallurgy, properties, and application, NASA Report No. NASA-SP-5110, 1972.
- [15] M.H. Elahinia, M. Hashemi, M. Tabesh, S.B. Bhaduri, Manufacturing and processing of NiTi implants: A review, Progress in Materials Science 57/5 (2012) 911-946. DOI: https://doi.org/10.1016/j.pmatsci.2011.11.001
- [16] M.T. Andani, N.S. Moghaddam, C. Haberland, D. Dean, M.J. Miller, M. Elahinia, Metals for bone implants. Part 1. Powder metallurgy and implant rendering, Acta Biomaterialia 10/10 (2014) 4058-4070. DOI: https://doi.org/10.1016/j.actbio.2014.06.025
- [17] N.S. Moghaddam, R. Skoracki, M. Miller, M. Elahinia, D. Dean, Three dimensional printing of stiffness-tuned, nitinol skeletal fixation hardware with an example of mandibular segmental defect repair, Procedia CIRP 49 (2016) 45-50. DOI: https://doi.org/10.1016/j.procir.2015.07.027
- [18] B. O’Brien, F.M. Weafer, M.S. Bruzzi, Shape Memory Alloys for Use in Medicine, in: P. Ducheyne, (ed), Comprehensive Biomaterials II, Volume 1, Elsevier, Oxford, UK, 2017, 50-78. DOI: https://doi.org/10.1016/B978-0-12-803581-8.10084-0
- [19] N.S. Moghaddam, Toward patient specific long lasting metallic implants for mandibular segmental defects, PhD Thesis, University of Toledo, Toledo, 2015.
- [20] Z.X. Khoo, J. An, C.K. Chua, Y.F. Shen, C.N. Kuo, Y. Liu, Effect of heat treatment on repetitively scanned SLM NiTi shape memory alloy, Materials 12/1 (2019) 77. DOI: https://doi.org/10.3390/ma12010077
- [21] S. Saedi, N.S. Moghaddam, A. Amerinatanzi, M. Elahinia, H.E. Karaca, On the effects of selective laser melting process parameters on microstructure and thermomechanical response of Ni-rich NiTi, Acta Materialia 144 (2018) 552-560. DOI: https://doi.org/10.1016/j.actamat.2017.10.072
- [22] M.T. Andani, S. Saedi, A.S. Turabi, M.R. Karamooz, C. Haberland, H.E. Karaca, M. Elahinia, Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting, Journal of the Mechanical Behavior of Biomedical Materials 68 (2017) 224-231. DOI: https://doi.org/10.1016/j.jmbbm.2017.01.047
- [23] J. Khalil-Allafi, A. Dlouhy, G. Eggeler, Ni 4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Materialia 50/17 (2002) 4255-4274. DOI: https://doi.org/10.1016/S1359-6454(02)00257-4
- [24] J. Michutta, C. Somsen, A. Yawny, A. Dlouhy, G. Eggeler, Elementary martensitic transformation processes in Ni-rich NiTi single crystals with Ni 4Ti3 precipitates, Acta Materialia 54/13 (2006) 3525-3542. DOI: https://doi.org/10.1016/j.actamat.2006.03.036
- [25] C. Ma, D. Gu, D. Dai, M. Xia, H. Chen, Selective growth of Ni 4Ti3 precipitate variants induced by complicated cyclic stress during laser additive manufacturing of NiTi-based composites, Materials Characterization 143 (2018) 191-196. DOI: https://doi.org/10.1016/j.matchar.2018.04.004
- [26] W.A. Brantley, Orthodontic wires, in: W.A. Brantley, T. Eliades (eds.), Orthodontic materials: scientific and clinical aspects, Thieme, Stuttgart, 2001, 77-103.
- [27] S. Bose, D. Ke, H. Sahasrabudhe, A. Bandyopadhyay, Additive manufacturing of biomaterials, Progress in Materials Science 93 (2018) 45-111. DOI: https://doi.org/10.1016/j.pmatsci.2017.08.003
- [28] T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Additive manufacturing of metallic components–process, structure and properties, Progress in Materials Science 92 (2018) 112-224. DOI: https://doi.org/10.1016/j.pmatsci.2017.10.001
- [29] T.D. Ngo, A. Kashani, G. Imbalzano, K.T. Nguyen, D. Hui, Additive manufacturing (3D printing): A review of materials, methods, applications and challenges, Composites Part B: Engineering 143 (2018) 172-196. DOI: https://doi.org/10.1016/j.compositesb.2018.02.012
- [30] P. Šittner, M. Landa, P. Lukáš, V. Novák, R-phase transformation phenomena in thermomechanically loaded NiTi polycrystals, Mechanics of Materials 38/5-6 (2006) 475-492. DOI: https://doi.org/10.1016/j.mechmat.2005.05.025
- [31] X. Wang, S. Kustov, B. Verlinden, J. Van Humbeeck, Fundamental development on utilizing the R-phase transformation in NiTi shape memory alloys, Shape Memory and Superelasticity 1 (2015) 231-239. DOI: https://doi.org/10.1007/s40830-015-0007-2
- [32] B. Feng, X. Kong, S. Hao, Y. Liu, Y. Yang, H. Yang, F. Guo, D. Jiang, T. Wang, Y. Ren, L. Cui, In-situ synchrotron high energy X-ray diffraction study of micro-mechanical behaviour of R phase reorientation in nanocrystalline NiTi alloy, Acta Materialia 194 (2020) 565-576. DOI: https://doi.org/10.1016/j.actamat.2020.05.004
- [33] T.W. Duerig, K.N. Melton, D. Stöckel, C. M. Wayman, Engineering aspects of shape memory alloys, Butterworth-Heinemann Oxford, 2013.
- [34] J.C. Chekotu, R. Goodall, D. Kinahan, D. Brabazon, Control of Ni-Ti phase structure, solid-state transformation temperatures and enthalpies via control of L-PBF process parameters, Materials and Design 218 (2022) 110715. DOI: https://doi.org/10.1016/j.matdes.2022.110715
- [35] J. Ma, B. Franco, G. Tapia, K. Karayagiz, L. Johnson, J. Liu, R. Arróyave, I. Karaman, A. Elwany, Spatial control of functional response in 4D-printed active metallic structures, Scientific Reports 7/1 (2017) 46707. DOI: https://doi.org/10.1038/srep46707
- [36] J.C. Chekotu, R. Groarke, K. O’Toole, D. Brabazon, Advances in selective laser melting of nitinol shape memory alloy part production, Materials 12/5 (2019) 809. DOI: https://doi.org/10.3390/ma12050809
- [37] W.D. Callister, Fundamentals of materials science and engineering, Wiley, London, 2000.
- [38] Y. Cao, X. Zhou, D. Cong, H. Zheng, Y. Cao, Z. Nie, Z. Chen, S. Li, N. Xu, Z. Gao, W. Cai, Y. Wang, Large tunable elastocaloric effect in additively manufactured Ni–Ti shape memory alloys, Acta Materialia 194 (2020) 178-189. DOI: https://doi.org/10.1016/j.actamat.2020.04.007
- [39] C. Haberland, M. Elahinia, J.M. Walker, H. Meier, J. Frenzel, On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing, Smart Materials and Structures 23/10 (2014) 104002. DOI: https://doi.org/10.1088/0964-1726/23/10/104002
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e338981e-6bfd-433d-b125-a070aefb1aad
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.