Tadeusz KACZOREK

RESPONSES OF STANDARD AND FRACTIONAL LINEAR SYSTEMS
WITH DERIVATIVES OF THEIR INPUTS

Abstract
The responses of continuous-time and discrete-time linear systems with derivatives of their inputs are ad-
dressed. It is shown that the formulae for state vectors and outputs are also valid for their derivatives if the inputs
and outputs and their derivatives of suitable order are zero for t = 0. Similar results are also shown for the dis-
crete-time linear systems and for the fractional continuous-time and discrete-time linear systems.

INTRODUCTION

Derivation of the response formulae for linear systems is a
classical problem of linear systems theory and it has been addres-
sed in many books and papers [1-5, 10-12]. Mathematical funda-
mentals of fractional calculus and its some applications are given in
the monographs [6-9]. Some problems of fractional systems theory
and its applications have been considered in [3, 8].

In this paper the following problem is addressed. Under which
conditions the well-known formulae for the solutions of the state
equations and their outputs are also valid for derivatives of their
inputs for standard and fractional continuous-time and discrete-time
linear systems.

he paper is organized as follows. In section 2 the problem is
analyzed for standard continuous-time linear systems and in section
3 for the standard discrete-time linear systems. An extension of
these considerations to fractional continuous-time linear systems is
given in section 4 and to the fractional discrete-time linear systems
in section 5. Concluding remarks are presented in section 6.

The following notation will be used: R - the set of real num-

bers, R™™ - the set of Nxm real matrices and R" =R, Z,
- the set of nonnegative integers, 1,, -the nxn identity matrix.

1. CONTINUOUS-TIME LINEAR SYSTEMS

Consider the continuous-time linear system shown in Fig. 1
with the impulse response matrix  g(t) = £[G(S)],

G(s) = £[g(t)] = T g(t)eS'dt, where G(s) e RP™(s) is the
0

transfer matrix, £ is the inverse Laplace transform and R P*™ (s)
is the set of pxm rational matrices in s.

u(t) vt
Ufs) Y(s)

Fig. 1. Continuous-time linear system.

The output y(t) e RP of the system for the input u(t) e R™
and zero initial conditions x(0) =0 is given by

~

t
y®) = [g(t-ou()dr. (
0
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The following problem arises. Under which conditions the follo-
wing equality also holds for the system

t
y(© = [g(t-2)u()dz @)
0
where Y(t) = y(tt) nd () = d‘;(tt)

We will prove that (1) implies (2) if and only if u(0)=0 and
y(0)=0.

By assumption the initial conditions are zero and u(0)=0 im-
plies y(0) =0. Multiplying the equality Y (s) = G(s)U(s) by s and
taking into account that u(0)=0 and y(0)=0 we have

sY(s) - y(0) =G(s)[sU (s) —u(0)] . (3)

Applying the inverse Laplace transform to (3) we obtain (2) sin-
ce

ly®)]=sY(s)-y(0) and [u(t)]=sU(s)-u(0). (4)
In general case we have the following theorem:

Theorem 1. The equality (1) implies

t
y@(t):[g(t—r)u@(r)dz, q=12,.. (5)
0

if and only if

- 0] o, y- d* 850

t=0 t=0

-0, k=12,....(6)

Proof. Applying Laplace transform and the convolution theorem to
(5) we obtain

LIy @ )] =s% (s)—isqf"y“*l’ (0) =G(s)c[u® (1)]

=1

=G(s)[sU (5) —isq‘ju“‘l) (0)].

-1

(7)

For zero initial conditions we have
s9Y (s) =G(s)sU (s) =sIG(s)U (s) (8)

and (5) holds if and only if the conditions (6) are satisfied. o



Example 1. Consider the electrical circuit shown in Fig. 2 with given
resistance R, capacitance C, and source voltage u(t) .

R

| E—

¢ = uett

w0 ()

Fig. 2. Electrical circuit

Using Kirchhoff's law and Laplace transform to the electrical
circuit we obtain
U (s) =SRCU¢ (s) +Uc (s) for uc (0)=0, 9

where U (s) = Z[u(®)] , Uc (s) = £[ug (©)].

From (9) we have

UG) 1
Ue(s)=—2
¢ RC

1 -t
+1=EU(S){eRC]. (10)
RC

Using the convolution theorem and inverse Laplace transform to (10)
we obtain

t _(t-7)

1
uct)==—=1|e RCu(r)dr (1)
=
and
1 t _(t—r)
uc(t)=ﬁje RC y(z)dz for u(0)=0.  (12)
0
Note that for
u(t) =Usint (13)
u(0) =0, but for
u(t) =U cost (14)

u(0)=U =0.
Using (12) for (13) we obtain

t 7(t—r)
je RC cosrdr . (15)
0

ity=cde®_Y

dt R

Consider the linear continuous-time system described by the state
equations

Xx=Ax+Bu, (16)

y=Cx+Du, (17)
where x=x(t)eR", u=u(t)eR™, y=y(t)eR’ are the

state, input and output vectors, respectively and AeR™",
BeR™™ CeR”" DeRP™,

The solution to the equation (16) for zero initial conditions
X(0) = X, =0 has the form

t
X(t) = j eAtIBy(r)dr . (18)
0
Substitution of (18) into (17) yields
t
y(t)=C [e*Bu(z)d +Du(t). (19)
0
Theorem 2. The equalities (18) and (19) imply, respectively
t
x@(t) = j AIBU@ (F)dr, g=12,..  (20)
0
and
t
y@ ) =C j At IBU@ (7)dz + DU@(t), g=12,.. (21)
0

if and only if the condition (6) is satisfied.

Proof. Proof is similar to the proof of Theorem 1.

2. DISCRETE-TIME LINEAR SYSTEMS

Consider the discrete-time linear system shown in Fig. 3 with
given the impulse response matrix g(i) =z [G(2)],

G(z)=z[g()]=Y g@i)z", where G(z)eRP™(z) is the
i=0

transfer matrix of the discrete-time system and 9:3P*™(z) is the set

of pxm rational matrices in z.

u(i) — V(i)
Utz) Y(z)

Fig. 3. Discrete-time linear system

The output y(i) e RP of the system for the input u(i) e R™ and
zero initial conditions x(0) =0 is given by
i
y(@)=>g(i-ju(j). (22)
j=0
The following problem arises. Under which conditions the follo-
wing equality holds
i
Ay(i)=>"g(i- jAu(j), (23)
j=0

where Ay(i) = y(i+21)—y(i) and Au(j)=u(j+D—u(j).

We will prove that (22) implies (23) if and only if u(0) =0 and y(0) =

0.

By assumption the initial conditions are zero and u(0) =0 . Multi-

plying the equality Y (z) =G(z)U(z) by (z—1) and taking into

account that y(0) =G(z)u(0) =0 for u(0) =0 we obtain
(z-DY(2)-2y(0)=G()I(z-DU(2) —zu(0)].  (24)

Applying the inverse Z-transform to (24) we obtain (23) since

Z[Ay()]=(z-1)Y (z)— zy(0) and

4
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Z[Au(@)] =(z-DU(z) — zu(0) . (25)
In general case we have the following theorem.
Theorem 3. The equality (23) implies

ADy(i) = iZq(i - NAYu(j), g=12.. (26)
j=0
if and only if
0= 01Ky =0
u@=)> (- uik—1)=0,
7 ey
) " (27a)
Ay 0) =Y (-1)) —= k-j)=0 for k=12,...q-1
y(0) ,Z‘,( i D=0 for q
or
u(@)=0, y(i)=0 fori=01,..,q-1. (27b)

Proof. Proof is similar to the proof of Theorem 1.

Consider the linear discrete-time system described by the state

equations
x(i+1) = Ax(i)+Bu(i), iez, ={01..} (28a)

y(i) = Cx(i) + Du(i), (28b)

where x(i) e R", u(i) e R™, y(i)eRP, ieZ, are the state,
input and output vectors, respectively and Ae R™", Be R™",
CeRP" DeRPM,

The solution to the equation (28a) for zero initial conditions
X(0) =0 has the form

x(i):iiA‘—i—lsu(j), iez,. (29)
j=0

Substitution of (29) into (28b) yields
y(i)=Ci§:Ai‘j‘1Bu(j)+ Du(i), iez,. (30)
j=0
Theorem 4. The equalities (29) and (30) imply, respectively
ADx(i) = 'f: AIBADY(j), iezZ,, q=12,... (31)
=0
and
ADy(i) = CEAi‘j‘lBA(“)u( i)+ DADu(i), q=12,... (32)
j=0
if and only if the condition (27) is satisfied.

Proof. Proof is similar to the proof of Theorem 3.
Example 2. Given the discrete-time linear system (28) with the ma-

trices
0 1 1
A={_6 _5]B={0},C=[O 1], D=0 (33)

input
u@i)=21-e™) (34)
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and zero initial conditions.

The transfer function of the system is equal to

G(z)=C[lz-A]"'B+D

z -1]1 6 (35)
=[0 1][6 Z+5}{0}=22+52+6

9() =z [G(2)]= Z'{

and
L} =-3(-2)' +2(-3)". (36)
22+52+6] '
Using (22) and (36) we obtain

y(i)=>"9(i- Hu(j)

j=0

i (37)
=D [-3(-2) +2(-3)" 1]-2(1-e 7).
j=0

Note that (34) u(@)=0, but

u(d) =2(1—e ) =0. Therefore, the equalities (31) and (32) are
satisfied only for g =1 but are not satisfied for q=2,3,.... From
(32) and (37) for g =1 we have

satisfies the condition

Ay(i) =Zg(i = )Au(j)
=0 (38)

= Zi)[—3(—2)i‘j +2(-3)"1]-2e7 T a-e™).
j=0

3. FRACTIONAL CONTINUOUS-TIME LINEAR SYSTEMS

In this section the following Caputo definition of the fractional
derivative will be used [3, 6-9]

a t (n)
R P 1
dta r*(l_a) 5 (t _Z_)OH— —Nn
n-l<a<neN={2,..}, (39a)
where « € R is the order of the derivative,
n
(M (r)= Lgf) (39b)
T
and
r'(x) = j e 't>1dt (39c)
0
is the Euler gamma function.
Consider the fractional continuous-time linear system
a
9°X _ Ax+Bu, 0<a <1 (40a)
dt®
y=Cx+Du, (40b)

where x=x(t)eR", u=u(t)eR™, y=y(t)eRP are the
state, input and output vectors, respectively and AeR™",
BeR™™ CeR”", DeR™™,



Applying the Laplace transform to (40) and taking into account that

le Z:(:l =5%X (s)—s*x(0),

X(s) = £[x(t)] = ofx(t)e‘“dt ,0<a<l (1)
0

for zero initial conditions x(0) = 0, we obtain
X(s)=[1,5* = AI™*BU(s), U(s) = £u(t)] . (42)

Taking into account that [3]

[Insa _ A]—l _ z Akg—(k+Dea 43)
k=0
we obtain
X(s) = A's DB (s). (44)
k=0

Using the inverse Laplace transform and the convolution theorem to
(44) we obtain [3]

t
x(t) = j ®(t—7)Bu(z)dr, (45)
0

where

o pkp(keDa-1

O(t) = ng : (46)
Substitution of (45) into (40b)
y(t) = de)(t ~7)Bu(z)dr + Du(t). 47)
Theorem 5. The equali(:ies (4.7) and (4.9) imply, respectively
dz:ﬂ(t) :i®(t—r)Buﬂ (t)dr (48)

and

t
dztyﬁ(—t) ~cfo(t-7)Bu’(dr+Du’()  (49)
0

ifand only if u(0) =0, y(0)=0.
Proof. Multiplying (44) by s” we obtain
s7X(s)-s"x(0) = D" A*s~®D“B[sPU (s) - s”u(0)] (50)
k=0
since by assumption x(0)=0 and u(0)=0.
Applying the inverse Laplace transform to (50) we obtain (48) if and
only if u(0) =0 . Proof of (49) is similar. o

4. FRACTIONAL DISCRETE-TIME LINEAR SYSTEMS

Consider the fractional discrete-time linear system

A*X(i+1) = Ax() + Bu(i), ieZ, ={01..}  (51a)

y(i) = Cx(i) + Du(i), (51b)

where x(i) e R", u(i)eR™, y(i)eRP, ieZ, are the state,
input and output vectors, respectively, AeR™", BeR™",

CeRP" DeR”™ and the fractional difference of the order
« is defined by

Nx(i) = i(—l)j(ﬂx(i -, (51c)
j=0
a 1 for  j=0
(jj: a(a—l)...j(|a—]+1) for j-12... 619

Substituting (51c) into (51a) we obtain
i+1

X(i +2) = A x(i) + Z(—l)“l((}l)x(i — j+1)+Bu(i), (52a)
j=2

where
A=A+l (52b)
The solution of the equation (52a) has the form [3]
i-1
x(i) = d(i)x(0) + Z(I)(i — j+1Bu(}j), (53)
=0

where

j+1
O(j+1) = Aa<I>(j)+lZ(—1)k+1((|Z}D(J' —k+1), ©(0)=1,.
k=2

(54)
Substitution of (53) into (51b) yields

y(i) :c<p(i)x(0)+iicq>(i —j+1)Bu(j)+Du(i). (55)
j=0

Theorem 6. The equalities (53) and (55) for zero initial condition
x(0) =0 imply, respectively

Ax(i)=i§®(i— j+1)BAu(j), iez, (56)
i=0

and
Ay(i) = SC(D(i — j+1)BAU(j)+DAu(i), iez, (57)

if and only if u((JJ;O= 0, y(0)=0.

Proof. Using (53) for x(0) =0 we obtain

Ax(i) = x(i+1) - x(i) = Zi:Q(i - J')BlJ(J')—iiCD(i - j+1)Bu(j)

i=0 i=0

=|§d)(i—j+1)BAu(j)
j=0

if and only if u(0) =0 . The proof of (57) is similar. o
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The considerations can be easily extended to higher order differ-
ence.

Theorem 7. The equalities (53) and (55) for zero initial conditions
x(0) =0 imply

i-1
A*x(i) =D (- j+1)BA™U(j), ieZ,, 0<a <l (59)
j=0
and
i-1
A%y(i) = CO(i- j+1)BAu(j)+DAu(i)  ieZ,, 0<a <1
j=0
(60)

ifand only if u(0)=0, y(0)=0.

Proof. Using the z-transform to (51c) for zero initial conditions and
the convolution theorem we obtain

Z[A%x(i)] = iA"‘x(i)z‘i = i{i(—l)j(o_jx(i - j)]z‘i
i j , (61)

i=0| j=0
=(-2H"X(@)
where X (z) = Z[x(i)] .
The z- transform to (51a) and (51b) for zero initial conditions yields
X(2)=[l,a-zH* - AT'BU(z) (62)

and

Y(z)={C[l,@-z")*-A"'B+D}(z), (63)
where U (z) = Z[u(i)] .

Multiplying (62) and (63) by (1—z1)® and using the inverse zet
transform and the convolution theorem we obtain (59) and (60),
respectively. o

CONCLUDING REMARKS

The responses of continuous-time and discrete-time linear sys-
tems with derivatives of their inputs have been addressed. It has
been shown that the formulae for state vectors and outputs are also
valid for their derivatives if the inputs and outputs and their
derivatives of suitable order are zero for t = 0 (Theorem 2). Similar
results are also valid for discrete-time linear systems (Theorem 3)
and fractional linear systems (Theorem 5 and Theorem 7). The
considerations have been illustrated by examples of continuous-
time and discrete-time linear systems. The considerations can be
extended to fractional positive linear systems.
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ODPOWIEDZI UKLADOW LINIOWYCH
RZEDOW CALKOWITYCH
| NIE CALKOWITYCH
Z POCHODNYMI WYMUSZEN

Streszczenie

W artykule rozpatrywane sq ciggte uktady liniowe
oraz dyskretne uktady liniowe z pochodnymi (i odpo-
wiednio roznicami) wymuszen. POkazano, ze wzory
okreslajgce pochodne wyjscia uktadow i wektorow sta-
nu sq rowniez prawdziwe dla ich pochodnych jezeli
odpowiednie warunki poczgtkowe i ich pochodnych sg
zerowe. Analogiczne wyniki zostaly rowniez wyprowa-
dzone dla ukiadow dyskretnych rzedow catkowitych i
niecatkowitych.
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