Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper deals with the modelling of traction linear induction motors (LIMs) for public transportation. The magnetic end effect inherent to these motors causes an asymmetry of their phase impedances. Thus, if the LIM is supplied from the three-phase symmetrical voltage, its phase currents become asymmetric. This effect must be taken into consideration when simulating the LIMs’ performance. Otherwise, when the motor phase currents are assumed to be symmetric in the simulation, the simulation results are in error. This paper investigates the LIM performance, considering the end-effect induced asymmetry of the phase currents, and presents a comparative study of the LIM performance characteristics in both the voltage and the current mode.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
473--483
Opis fizyczny
Bibliogr. 14 poz., rys., wz.
Twórcy
autor
- West Pomeranian University of Technology Szczecin al. Piastów 17,70-310 Szczecin, Poland
autor
- West Pomeranian University of Technology Szczecin al. Piastów 17,70-310 Szczecin, Poland
- Bombardier Transportation, Kingston, Ontario, Canada
autor
- West Pomeranian University of Technology Szczecin al. Piastów 17,70-310 Szczecin, Poland
autor
- China University of Mining and Technology, Xuzhou, China
autor
- China University of Mining and Technology, Xuzhou, China
Bibliografia
- [1] Woronowicz K., Palka R., An advanced linear induction motor control approach using the compensation of its parameters, Electromagnetic Fields in Electrical Engineering, IOS Press, vol. 22, pp. 335–338 (2002).
- [2] Woronowicz K., Palka R., Optimised Thrust Control of Linear Induction Motors by a Compensation Approach, International Journal of Applied Electromagnetics and Mechanics, vol. 19, pp. 533–536 (2004).
- [3] Adamiak K., A method of optimization of winding in linear induction motor, Archiv für Elektrotechnik, vol. 69, pp. 83–91 (1986), DOI: 10.1007/bf01574843.
- [4] Gieras J., Dawson G., Eastham A., Performance calculation for single-sided linear induction motors with a double-layer reaction rail under constant current excitation, IEEE Transactions on Magnetics, vol. 22, no. 1, pp. 54-62 (1986), DOI: 10.1109/TMAG.1986.1064270.
- [5] Mendrela E.A., Gierczak E., Two-dimensional analysis of linear induction motor using Fourier’s series method, Archiv für Elektrotechnik, vol. 65, no. 1–2, pp. 97–106 (1982).
- [6] Abdelqader M., Morelli J., Palka R., Woronowicz K., 2-D quasi-static solution of a coil in relative motion to a conducting plate, COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 36, no. 4, pp. 980–990 (2017), DOI: 10.1108/COMPEL- 07-2016-0312.
- [7] Woronowicz K., Abdelqader M., Palka R., Morelli J., 2-D Quasi-Static Fourier Series Solution for a Linear Induction Motor, COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 37, no. 3, pp. 1099–1109 (2018), DOI: 10.1108/COMPEL- 06-2017-0247.
- [8] De Gersem H., Hameyer K., Finite element simulation of a magnetic brake with a soft magnetic solid iron rotor, COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 21, no. 2, pp. 296–306 (2002), DOI: 10.1108/03321640210416386.
- [9] De Gersem H., Vande Sande H., Hameyer K., Motional magnetic finite element method applied to high speed rotating devices, COMPEL – The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 19, no. 2, pp. 446–451 (2000), DOI: 10.1108/03321640110383852.
- [10] Palka R.,Woronowicz K., Kotwas J., Current Mode Performance of a Traction Linear Induction Motor Driven from the Voltage Converter, Transportation Systems and Technology, vol. 4, no. 3, pp. 105–114 (2018), DOI: 10.17816/transsyst20184200-00.
- [11] Abdollahi S.E., Mirzayee M., Mirsalim M., Design and analysis of a double-sided linear induction motor for transportation, IEEE Transactions on Magnetics, vol. 51, no. 7, pp. 1–7 (2015), DOI: 10.1109/TMAG.2015.2407856.
- [12] Amiri E., Mendrela E.A., A novel equivalent circuit model of linear induction motors considering static and dynamic end effects, IEEE Transactions on Magnetics, vol. 50, no. 3, pp. 120–128 (2014), DOI: 10.1109/TMAG.2013.2285222.
- [13] Woronowicz K., Safaee A., A novel linear induction motor equivalent-circuit with optimized end effect model, Canadian Journal of Electrical and Computer Engineering, vol. 37, no. 1, pp. 34–41 (2014), DOI: 10.1109/CJECE.2014.2311958.
- [14] Introduction to COMSOL Multiphysics, Version 5.3, © 1998–2017 COMSOL, available at: https://www.comsol.com/documentation.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e32f7b99-1fb4-435e-965e-df906d55669b