PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

The Effects of Ozonolysis on Oil Palm Fruit Mesocarp Delignification

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Oil palm fruit mesocarp (OPFM) is a solid by-product containing cellulose, potentially serving as a raw material for biofuel. The cellulose content of this solid by-product can be extracted through delignification. Therefore, this study aimed to investigate the application of ozone for OPFM delignification to break down lignin bonds in the material. During the analysis, ozonolysis delignification was influenced by particle size, oxygen flow rate, and reaction time. Ozone flowrate analyzed using the Iodometric method. Cellulose, hemicellulose, and lignin content of raw material and treated samples were analyzed using the α–cellulose, γ–cellulose, and the Kappa method. The results showed that by using a particle size of 100 mesh, and a flow rate of 2 Lmin-1 for 15 min, ozone degraded 42.03% lignin, 15.89% hemicellulose, and concentrated 62.85% cellulose. SEM and FTIR results showed the removal of hemicellulose and lignin from OPFM with ozonolysis delignification. Furthermore, XRD analysis showed the crystallinity degree of the high cellulose yield.
Rocznik
Strony
305--316
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
  • Faculty of Engineering, Universitas Sriwijaya, Palembang 30139, South Sumatra, Indonesia
  • Chemical Engineering Department, Faculty of Engineering, Universitas Sriwijaya, Jl. Raya Palembang- Prabumulih KM. 32 Ogan Ilir 30662, South Sumatra, Indonesia
  • Faculty of Engineering, Universitas Sriwijaya, Palembang 30139, South Sumatra, Indonesia
autor
  • Faculty of Engineering, Universitas Sriwijaya, Palembang 30139, South Sumatra, Indonesia
  • Biology Department, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir 30662, South Sumatra, Indonesia
Bibliografia
  • 1. Baig, K.S., Wu, J., Turcotte, G., Doan, H.D. 2015. Novel ozonation technique to delignify wheat straw for biofuel production. Energy and Environment, 26(3), 303–318. https://doi.org/10.1260/0958-305X.26.3.303
  • 2. Baig, K.S. 2022. Kinetics of lignin removal from the lignocellulosic matrix after ozone transportation. Methane, 1(3), 177–188. https://doi.org/10.3390/methane1030014
  • 3. Barros, R. da R.O. de, Paredes, R. de S., Endo, T., Da Silva Bon, E.P., Lee, S.H. 2013. Association of wet disk milling and ozonolysis as pretreatment for enzymatic saccharification of sugarcane bagasse and straw. Bioresource Technology, 136, 288294. http://dx.doi.org/10.1016/j.biortech.2013.03.009
  • 4. Bhattarai, S., Bottenus, D., Ivory, C.F., Haiming, A., Bule, M., Garcia-Perez, M., Chen, S. 2015. Bioresource technology simulation of the ozone pretreatment of wheat straw. Bioresource Technology, 196, 78–87. https://doi.org/10.1016/j.biortech.2015.07.022
  • 5. Binder, A., Pelloni, L., Fiechter, A. 1980. Delignification of straw with ozone to enhance biodegradability. European Journal of Applied Microbiology and Biotechnology, 11(1), 1–5. https://doi.org/10.1007/BF00514070
  • 6. Carolin C,F., Kamalesh, T., Kumar, P.S., Hemavathy, R.V., Rangasamy, G. 2023. A critical review on sustainable cellulose materials and its multifaceted applications. Industrial Crops and Products, 203, 1–19. http://doi.org/10.1016/j.indcrop.2023.117221
  • 7. Chieng, B.W., Lee, S.H., Ibrahim, N.A., Then, Y.Y., Loo, Y.Y. 2017. Isolation and characterization of cellulose nanocrystals from oil palm mesocarp fiber. Polymers, 9(8), 1–11. https://doi.org/10.3390/polym9080355
  • 8. Dwi Anggoro, D., Buchori, L., Kusuma Dewi, I., Prasetyaningrum, A. 2022. The effect of ozonation, ultrasonic, and hybrid ozonation-ultrasonic pretreatment methods on the delignification of oil palm mesocarp fibers. International Journal of Advanced Research, 10(12), 194–204. https:// doi.org/10.21474/ijar01/15827
  • 9. Elanthikkal, S., Gopalakrishnapanicker, U., Varghese, S., Guthrie, J.T. 2010. Cellulose microfibres produced from banana plant wastes: Isolation and characterization. Carbohydrate Polymers, 80(3), 852–859. https://doi.org/10.1016/j.carbpol.2009.12.043
  • 10. Fackler, K., Stevanic, J.S., Ters, T., Hinterstoisser, B., Schwanninger, M., Salmén, L. 2010. Localisation and characterisation of incipient brown-rot decay within spruce wood cell walls using FT-IR imaging microscopy. Enzyme and Microbial Technology, 47(6), 257–267. https://doi.org/10.1016/j.enzmictec.2010.07.009
  • 11. Faix, O., Bremer, J., Schmidt, O., Tatjana, S.J. 1991. Monitoring of chemical changes in white-rot degraded beech wood by pyrolysis-gas chromatography and Fourier-transform infrared spectroscopy. Journal of Analytical and Applied Pyrolysis, 21, 147–162. https://doi.org/10.1016/0165-2370(91)80022-Z
  • 12. García-Cubero, M.T., González-Benito, G., Indacoechea, I., Coca, M., Bolado, S. 2009. Effect of ozonolysis pretreatment on enzymatic digestibility of wheat and rye straw. Bioresource Technology, 100(4), 1608–1613. https://doi.org/10.1016/j.biortech.2008.09.012
  • 13. García-cubero, M.T., Palacín, L.G., González-benito, G., Bolado, S., Lucas, S., Coca, M. 2012. An analysis of lignin removal in a fixed bed reactor by reaction of cereal straws with ozone. 107, 229–234. https://doi.org/10.1016/j.biortech.2011.12.010
  • 14. Hermansyah, Cahyadi, H., Fatma, Miksusanti, Kasmiarti, G., Panagan, A.T. 2021. Delignification of lignocellulosic biomass sugarcane bagasse by using ozone as initial step to produce bioethanol. Polish Journal of Environmental Studies, 30(5), 4405–4411. https://doi.org/10.15244/pjoes/132263
  • 15. Isroi, Ishola, M.M., Millati, R., Syamsiah, S., Cahyanto, M.N., Niklasson, C., Taherzadeh, M.J. 2012. Structural changes of oil palm empty fruit bunch (OPEFB) after fungal and phosphoric acid pretreatment. Molecules, 17(12), 14995–15012. https://doi.org/https://doi.org/10.3390/molecules171214995
  • 16. Kamel, A., Al, H., Turcotte, G., Wu, J., Cheng, C. 2015. Ozone pretreatment of humid wheat straw for biofuel production. Energy Science & Engineering, 3(6), 541–548. https://doi.org/10.1002/ese3.93
  • 17. Keris-Sen, U.D., Gurol, M.D. 2017. Using ozone for microalgal cell disruption to improve enzymatic saccharificatios of cellular carbohydrates. Biomass and Bioenergy, 105, 59–65. https://doi.org/10.1016/j.biombioe.2017.06.023
  • 18. Lee, J.M., Jameel, H., Venditti, R.A. 2010. Effect of ozone and autohydrolysis pretreatments on enzymatic digestibility of coastal bermuda grass. BioResources, 5(2), 1084–1101. https://doi.org/10.15376/biores.5.2.1084-1101
  • 19. Li, C., Wang, L., Chen, Z., Li, Y., Wang, R., Cai, G., Li, Y., Yu, Q., Lu, J. 2015. Ozonolysis pretreatment of maize stover: the interactive effect of sample particle size and moisture on ozonolysis process. Bioresource Technology. https://doi.org/10.1016/j.biortech.2015.01.042
  • 20. Lim, M., Zulkifli, A.Z.S. 2018. Investigation of biomass surface modification using non-thermal plasma treatment. Plasma Science and Technology, 20(11), 115502. https://doi.org/10.1088/2058-6272/aac819
  • 21. M’Arimi, M.M., Mecha, C.A., Kiprop, A.K., Ramkat, R. 2020. Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review. Renewable and Sustainable Energy Reviews, 121, 1–18. https://doi.org/10.1016/j.rser.2019.109669
  • 22. Mardawati, E., Herliansah, H., Adillah, Q., Hanidah, I.I., Andoyo, R. 2018. Evaluation of ozonolysis pre-treatment for xylose production through enzymatic hydrolysis. AIP Conference Proceeding, 020080(September), https://doi. org/10.1063/1.5055482
  • 23. Neely, W.C. 1984. Factors affecting the pretreatment of biomass with gaseous ozone. Biotechnology and Bioengineering, 26(1), 59–65. https://doi.org/10.1002/bit.260260112
  • 24. Pandey, K.K. 1999. A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. Journal of Applied Polymer Science, 71(12), 1969–1975. https://doi.org/10.1002/(sici)10974628(19990321)71:12<1969::aid-app6>3.3.co;2-4
  • 25. Schultz-Jensen, N., Leipold, F., Bindslev, H., Thomsen, A.B. 2011. Plasma-assisted pretreatment of wheat straw. Applied Biochemistry and Biotechnology, 163(4), 558–572. https://doi.org/10.1007/s12010-010-9062-5
  • 26. Schwanninger, M., Rodrigues, J.C., Pereira, H., Hinterstoisser, B. 2004. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy, 36(1), 2340. https://doi.org/10.1016/j.vibspec.2004.02.003
  • 27. Sharma, S. das, Pugsley, T.S. 2007. Effect of particle size distribution on the performance of a catalytic f luidized bed reactor. 12th International Conference on Fluidization, 655–662.
  • 28. Shi, F., Xiang, H., Li, Y. 2015. Combined pretreatment using ozonolysis and ball milling to improve enzymatic saccharification of corn straw. Bioresource Technology, 179, 444–451. http://dx.doi.org/10.1016/j.biortech.2014.12.063
  • 29. Shrestha, R., Joshi, U.M., Subedi, D.P. 2015. Experimental study of ozone generation by atmospheric pressure dielectric barrier discharge. International Journal of Research and Review, 8(4), 24–29.
  • 30. Simão, J.A., Marconcini, J.M., Capparelli Mattoso, L.H., Sanadi, A.R. 2019. Effect of SEBS-MA and MAPP as coupling agent on the thermal and mechanical properties in highly filled composites of oil palm Fiber/PP. Composite Interfaces, 26(8), 699–709. https://doi.org/10.1080/09276440.2018.1530916
  • 31. Sreekala, M.S., Kumaran, M.G., Thomas, S. 1997. Oil palm fibers: morphology, chemical composition, surface modification, and mechanical properties. Journal of Applied Polymer Science, 66(5), 821–835. https://doi.org/10.1002/(sici)10974628(19971031)66:5<821::aid-app2>3.0.co;2-x
  • 32. Suhada, N., Rasid, A., Shamjuddin, A., Aishah, N., Amin, S. 2021. Chemical and structural changes of ozonated empty fruit bunch (EFB) in a ribbon-mixer reactor. 16(2), 383–395. https://doi.org/10.9767/bcrec.16.2.10506.383-395
  • 33. Sulfahri, Mushlihah, S., Langford, A., Tassakka, A.C.M.A.R. 2020. Ozonolysis as an effective pretreatment strategy for bioethanol production from marine algae. Bioenergy Research, 13(4), 12691279. https://doi.org/10.1007/s12155-020-10131-w
  • 34. Travaini, R., Marangon-Jardim, C., Colodette, J.L., Morales-Otero, M., Bolado-Rodríguez, S. 2015. Ozonolysis. In pretreatment of biomass: Processes and technologies, 105–135. Elsevier B.V. https://doi.org/10.1016/B978-0-12-800080-9.00007-4
  • 35. Travaini, Rodolfo, Barrado, E., Bolado-Rodríguez, S. 2016. Effect of Ozonolysis pretreatment parameters on the sugar release, ozone consumption and ethanol production from sugarcane bagasse. Bioresource Technology, 214, 150–158. https://doi.org/10.1016/j.biortech.2016.04.102
  • 36. Travaini, Rodolfo, Otero, M.D.M., Coca, M., DaSilva, R., Bolado, S. 2013. Sugarcane bagasse ozonolysis pretreatment: Effect on enzymatic digestibility and inhibitory compound formation. Bioresource Technology, 133, 332–339. https://doi.org/10.1016/j.biortech.2013.01.133
  • 37. United State Department of Agriculture. 2023. Indonesia Palm Oil: Historical Revisions Using Satelite-Derived Methodology. In COmmodity Intelligence Report. https://ipad.fas.usda.gov/highlights/2012/08/Mexico_corn/
  • 38. Valdés, H., Sánchez-Polo, M., Rivera-Utrilla, J., Zaror, C.A. 2002. Effect of ozone treatment on surface properties of activated carbon. Langmuir, 18(6), 2111–2116. https://doi.org/10.1021/la010920a
  • 39. Vanderfleet, O.M., Cranston, E.D. 2021. Production routes to tailor the performance of cellulose nanocrystals. Nature Reviews Materials, 6(2), 124–144. https://doi.org/10.1038/s41578-020-00239-y
  • 40. Vitasari, D. 2008. The Effect of Ozone Concentration on the Bleached Pulp Properties. Seminar Nasional Teknoin 2008 Bidang Teknik Kimia Dan Tekstil, 17–21.
  • 41. Wan Omar, W.N.N., Amin, N.A.S. 2016. Multi response optimization of oil palm frond pretreatment by ozonolysis. Industrial Crops & Products, 85, 389402. https://doi.org/10.1016/j.indcrop.2016.01.027
  • 42. Wan Omar, W.N.N., Saidina Amin, N.A. 2021. Fractionation of oil palm fronds (OPF) by ozonolysis for enhanced sugar production. Chemical Engineering Transactions, 83, 409–414. https://doi.org/10.3303/CET2183069
  • 43. Wan, X., Ping, Y., Li, J. 2021. Effect of ozone treatment on the properties of oil palm empty fruit bunch sulfonated chemi-mechanical pulp. Forests, 12(8), 1–12. http://doi.org/10.3390/f12081085
  • 44. Yasim-Anuar, T.A.T., Ariffin, H., Norrrahim, M.N.F., Hassan, M.A. 2017. Factors affecting spinnability of oil palm mesocarp fiber cellulose solution for the production of microfiber. BioResources, 12(1), 715–734. https://doi.org/10.15376/biores.12.1.715-734
  • 45. Yulianto, E., Restiwijaya, M., Sasmita, E., Arianto, F., Kinandana, A.W., Nur, M. 2019. Power analysis of ozone generator for high capacity production. Journal of Physics: Conference Series, 1170(1). https://doi.org/10.1088/1742-6596/1170/1/012013
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e3287233-d405-4058-9056-1b42d308ffb2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.