PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The operation of THz quantum cascade laser in the region of negative differential resistance

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We investigate the light-current-voltage characteristics and emission spectra of 2.3THz quantum cascade laser operating in the negative differential resistance (NDR) region. It was shown that the formation of electric field domains (EFDs) leads to a large number of discontinuities on the current-voltage and the total optical power on current characteristics. Measurements of emission spectra at different current (before the NDR region and in the NDR region) shows that the formation of EFDs results in decrease of the output intensity, but does not influence on lasing frequencies. The performed calculations qualitatively explain the experimental results.
Twórcy
  • V.G. Mokerov Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow, Russia
  • Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
  • V.G. Mokerov Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow, Russia
  • V.G. Mokerov Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow, Russia
  • Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
  • Belarusian State University, Minsk, Belarus
  • Belarusian State University, Minsk, Belarus
  • Institute for Physics of Microstructures of RAS, Nizhny Novgorod, Russia
autor
  • Institute of Radio-Engineering and Electronics of RAS, Moscow, Russia
  • Institute of Radio-Engineering and Electronics of RAS, Moscow, Russia
  • Institute for Physics of Microstructures of RAS, Nizhny Novgorod, Russia
Bibliografia
  • [1] F. Capasso, K. Mohammed, A.Y. Cho, Sequential resonant tunneling through a multiquantum well superlattice, Appl. Phys. Lett. 48 (7) (1986) 478.
  • [2] J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Quantum cascade laser, Science 264 (1994) 553.
  • [3] S.L. Lu, L. Schrottke, R. Hey, H. Kostial, H.T. Grahn, Negative differential conductance and current bistability in undoped GaAs/(Al,Ga)As quantum-cascade structures, J. Appl. Phys. 97 (2005), 024511.
  • [4] A. Albo, Q. Hu, J. Reno, Room temperature negative differential resistance in terahertz quantum cascade laser structures, Appl. Phys. Lett. 109 (2016), 081102.
  • [5] M. Wienold, L. Schrottke, M. Giehler, R. Hey, H.T. Grahn, Nonlinear transport in quantum-cascade lasers: the role of electric-field domain formation for the laser characteristics, J. Appl. Phys. 109 (2011), 073112.
  • [6] R.S. Dhar, S.G. Razavipour, E. Dupont, C. Xu, S. Laframboise, Z. Wasilewski, Q. Hu, D. Ban, Direct nanoscale imaging of evolving electric field domains in quantum structures, Sci. Rep. 4 (2014) 7183.
  • [7] R.A. Khabibullin, N.V. Shchavruk, A.Y. Pavlov, D.S. Ponomarev, K.N. Tomosh, R.R. Galiev, P.P. Maltsev, A.E. Zhukov, G.E. Cirlin, F.I. Zubov, Z.I. Alferov, Fabrication of a terahertz quantum-cascade laser with a double metal waveguide based on multilayer GaAs/AlGaAs heterostructures, Semiconductors 50 (10) (2016) 1377.
  • [8] A.V. Ikonnikov, K.V. Marem’yanin, S.V. Morozov, V.I. Gavrilenko, A.Yu. Pavlov, N.V. Shchavruk, R.A. Khabibullin, R.R. Reznik, G.E. Cirlin, F.I. Zubov, A.E. Zhukov, Zh.I. Alferov, Terahertz radiation generation in multilayer quantum-cascade heterostructures, Tech. Phys. Lett. 43 (4) (2017) 358.
  • [9] O.Yu. Volkov, I.N. Dyuzhikov, M.V. Logunov, S.A. Nikitov, V.V. Pavlovskii, N.V. Shchavruk, A.Yu. Pavlov, R.A. Khabibullin, Analysis of terahertz radiation spectra in multilayer GaAs/AlGaAs heterostructures, J. Commun. Technol. Electron. 63 (9) (2018) 1042.
  • [10] D.V. Ushakov, I.S. Manak, Energy and emission characteristics of superlattice quantum-cascade structures, Opt. Spectrosc. 104 (5) (2008) 767.
  • [11] D.V. Ushakov, A.A. Afonenko, A.A. Dubinov, V.I. Gavrilenko, O.Yu. Volkov, N.V. Shchavruk, D.S. Ponomarev, R.A. Khabibullin, Balance equations method for simulation of terahertz quantum cascade lasers using the wave functions basis with reduced dipole moments of tunnel-coupled states, Quantum Electron. 49 (2019) 913–918.
  • [12] A.A. Afonenko, V.Ya. Aleshkin, A.A. Dubinov, Efficiency of vertical emission from a semiconductor laser waveguide with a diffraction grating, Semiconductors 48 (1) (2014) 89.
  • [13] V.B. Gorfinkel, S. Luryi, B. Gelmont, Theory of gain spectra for quantum cascade lasers and temperature dependence of their characteristics at low and moderate carrier concentrations, Quantum Electron. 32 (1996), 1995.
  • [14] D.V. Ushakov, V.K. Kononenko, I.S. Manak, Calculation of gain and luminescence spectra of quantum-cascade laser structures taking into account asymmetric emission line broadening, Quantum Electron. 40 (2010) 195.
  • [15] A.N. Drozd, A.A. Afonenko, Effect of Coulomb interaction of electrons on the intersubband emission lineshape in quantum wells, J. Appl. Specrtosc. 74 (5) (2007) 710.
  • [16] D.V. Ushakov, A.A. Afonenko, A.A. Dubinov, V.I. Gavrilenko, I.S. Vasil’evskii, N.V. Shchavruk, D.S. Ponomarev, R.A. Khabibullin, Mode loss spectra in THz quantum-cascade lasers with gold-and silver-based double metal waveguides, Quantum Electron. 48 (2018) 1005.
Uwagi
1. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
2. This study was supported by the Russian Foundation for Basic Research, project no. 18-52-00011 Bel_a, and the Belarussian Republican Foundation for Basic Research, project no. F18R-107. The fabrication of THz QCLs was supported by the Russian Science Foundation, grant no. 18-19-00493.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-e31eae91-82a8-4152-8150-c56682e8c2bf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.